Spaces:
Sleeping
Sleeping
File size: 54,207 Bytes
19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 20d4651 7f46686 20d4651 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 20d4651 42834e0 7f46686 8d0b826 7f46686 8d0b826 7f46686 8d0b826 7f46686 8d0b826 7f46686 8d0b826 7f46686 8d0b826 7f46686 8d0b826 7f46686 8d0b826 7f46686 855f6ac 7f46686 20d4651 7f46686 20d4651 7f46686 20d4651 7f46686 20d4651 7f46686 20d4651 7f46686 20d4651 7f46686 42834e0 20d4651 42834e0 7f46686 42834e0 7f46686 20d4651 7f46686 d59ba4a 7f46686 d59ba4a 20d4651 d59ba4a 7f46686 20d4651 42834e0 20d4651 42834e0 20d4651 7f46686 d59ba4a 20d4651 7f46686 20d4651 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 d59ba4a 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 0e7bad9 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 7f46686 19073ac 20d4651 19073ac 20d4651 7f46686 20d4651 7f46686 20d4651 7f46686 20d4651 7f46686 20d4651 42834e0 20d4651 7f46686 20d4651 7f46686 20d4651 7f46686 19073ac 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 42834e0 20d4651 19073ac 7f46686 0e7bad9 7f46686 20d4651 7f46686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 |
import asyncio
import json
import math
import os
import platform
import secrets
import tempfile
from collections import defaultdict, deque
from pathlib import Path
from time import monotonic
from typing import Any, Deque, DefaultDict, Optional
import numpy as np
from fastapi import Depends, FastAPI, Form, HTTPException, Request, UploadFile, status, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from fastapi.security import APIKeyHeader
from PIL import Image
# Lazy import DeepSeek-OCR dependencies (only load when needed)
_torch = None
_transformers = None
def _get_torch():
global _torch
if _torch is None:
try:
import torch
_torch = torch
except ImportError:
raise RuntimeError(
"torch is not installed. Install with: pip install torch"
)
return _torch
def _get_transformers():
global _transformers
if _transformers is None:
try:
from transformers import AutoModel, AutoTokenizer
_transformers = (AutoModel, AutoTokenizer)
except ImportError:
raise RuntimeError(
"transformers is not installed. Install with: pip install transformers"
)
return _transformers
# Import llm_splitter (works as module or direct import)
try:
from llm_splitter import call_llm_splitter
except ImportError:
# Fallback for relative import
try:
from .llm_splitter import call_llm_splitter
except ImportError:
# If llm_splitter doesn't exist, define a stub
async def call_llm_splitter(*args, **kwargs):
raise NotImplementedError("llm_splitter not available")
ALLOWED_CONTENT_TYPES = {
"image/jpeg",
"image/png",
"image/webp",
}
MAX_UPLOAD_BYTES = int(os.getenv("MAX_UPLOAD_BYTES", str(5 * 1024 * 1024)))
RATE_LIMIT_REQUESTS = int(os.getenv("RATE_LIMIT_REQUESTS", "30"))
RATE_LIMIT_WINDOW_SECONDS = float(os.getenv("RATE_LIMIT_WINDOW_SECONDS", "60"))
# Allow API key to be optional for development (security risk in production!)
SERVICE_API_KEY = os.getenv("SERVICE_API_KEY", "dev-key-change-in-production")
REQUIRE_API_KEY = os.getenv("REQUIRE_API_KEY", "false").lower() == "true"
API_KEY_HEADER_NAME = "X-API-Key"
MAX_CHILD_LINES = 500
MAX_JSON_DEPTH = 4
MAX_JSON_STRING_LENGTH = 512
MAX_JSON_DICT_KEYS = 50
MAX_JSON_LIST_ITEMS = 100
# DeepSeek-OCR Model Configuration - Maximum Quality Settings for CPU/Spaces
MODEL_NAME = "deepseek-ai/DeepSeek-OCR"
# PIN MODEL REVISION to prevent auto-updates that break compatibility
MODEL_REVISION = os.getenv("DEEPSEEK_MODEL_REVISION", "2c968b433af61a059311cbf8997765023806a24d")
# Detect Apple Silicon (M1/M2/M3/M4) - use MPS if available, otherwise CPU
IS_APPLE_SILICON = platform.machine() == "arm64"
USE_GPU = os.getenv("USE_GPU", "true").lower() == "true" and not IS_APPLE_SILICON
USE_MPS = IS_APPLE_SILICON
# Quality settings - Gundam preset recommended for CPU/Spaces
BASE_SIZE = int(os.getenv("DEEPSEEK_BASE_SIZE", "1024"))
IMAGE_SIZE = int(os.getenv("DEEPSEEK_IMAGE_SIZE", "640"))
CROP_MODE = os.getenv("DEEPSEEK_CROP_MODE", "true").lower() == "true"
app = FastAPI(
title="DeepSeek-OCR API",
description="OCR Service using DeepSeek-OCR for maximum quality text extraction",
version="1.0.0"
)
# Add root endpoint for health check (compatible with HuggingFace Spaces)
@app.get("/")
async def root(__sign: Optional[str] = None):
"""
Root endpoint - compatible with HuggingFace Spaces authentication.
The __sign parameter is used by HuggingFace's proxy but can be ignored.
"""
return {
"service": "DeepSeek-OCR API",
"status": "running",
"version": "1.0.0",
"endpoints": {
"docs": "/docs",
"ocr": "/ocr",
"split": "/split"
}
}
# Add CORS middleware to allow frontend requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, replace with specific origins
allow_credentials=True,
allow_methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"],
allow_headers=["*"],
expose_headers=["*"],
)
# Initialize DeepSeek-OCR model
_ocr_model = None
_ocr_tokenizer = None
_model_lock = asyncio.Lock()
# Job management for async processing and cancellation
_jobs: dict[str, dict] = {} # job_id -> {status, progress, result, error, cancelled}
_jobs_lock = asyncio.Lock()
_cancellation_tokens: dict[str, asyncio.Event] = {} # job_id -> cancellation event
# Import cancel registry
try:
from cancel_registry import cancel_job, get_cancel_flag, new_cancel_flag, remove_cancel_flag, is_cancelled
except ImportError:
# Fallback if cancel_registry not available
def cancel_job(job_id: str): return False
def get_cancel_flag(job_id: str): return _cancellation_tokens.get(job_id)
def new_cancel_flag(job_id: str): return _cancellation_tokens.setdefault(job_id, asyncio.Event())
def remove_cancel_flag(job_id: str): pass
async def is_cancelled(job_id: str): return False
# StoppingCriteria for generation (if transformers supports it)
try:
from transformers import StoppingCriteria, StoppingCriteriaList
_STOPPING_CRITERIA_AVAILABLE = True
except ImportError:
_STOPPING_CRITERIA_AVAILABLE = False
StoppingCriteria = None
StoppingCriteriaList = None
class CancelCriterion(StoppingCriteria):
"""Stopping criteria that checks a cancellation flag"""
def __init__(self, cancel_flag: asyncio.Event):
self.cancel_flag = cancel_flag
def __call__(self, input_ids, scores, **kwargs):
"""Return True to stop generation immediately"""
return self.cancel_flag.is_set()
def _download_and_patch_model_locally(model_id: str, revision: str) -> str:
"""
Download DeepSeek-OCR to a local dir, patch for CPU:
- remove hardcoded .cuda()
- force float32 (strip .bfloat16() / .to(torch.bfloat16))
Minimal patcher that avoids indentation issues by NOT touching autocast blocks.
On CPU, torch.autocast is auto-disabled anyway, so we leave it alone.
Return local path for from_pretrained(...).
Per official HuggingFace discussions:
- https://huggingface.co/deepseek-ai/DeepSeek-OCR/discussions/21 (CPU inference)
- https://huggingface.co/deepseek-ai/DeepSeek-OCR/discussions/20 (BF16/FP32 issues)
"""
import re
try:
from huggingface_hub import snapshot_download
except ImportError:
raise RuntimeError("huggingface_hub is required. Install with: pip install huggingface_hub")
print(f" 📥 Downloading model (revision {revision[:8]})...")
local_dir = snapshot_download(model_id, revision=revision)
print(f" ✅ Downloaded to: {local_dir}")
local_dir = Path(local_dir)
def patch_file(p: Path):
"""Minimal patch - only string replacements, no indentation changes"""
txt0 = p.read_text(encoding="utf-8")
txt = txt0
# A) Remove hardcoded CUDA device moves (CPU-safe)
txt = txt.replace(".unsqueeze(-1).cuda()", ".unsqueeze(-1)")
txt = txt.replace("input_ids.unsqueeze(0).cuda()", "input_ids.unsqueeze(0)")
txt = txt.replace("(images_crop.cuda(), images_ori.cuda())", "(images_crop, images_ori)")
txt = txt.replace("images_seq_mask = images_seq_mask.unsqueeze(0).cuda()",
"images_seq_mask = images_seq_mask.unsqueeze(0)")
txt = txt.replace("input_ids.unsqueeze(0).cuda().shape[1]",
"input_ids.unsqueeze(0).shape[1]")
# B) Force FP32 (fix BF16 vs FP32), pattern-safe (no newlines/indentation changes)
txt = re.sub(r"\.bfloat16\(\)", ".float()", txt)
txt = re.sub(r"\.to\(\s*torch\.bfloat16\s*\)", ".to(torch.float32)", txt)
txt = re.sub(r"\.to\(\s*dtype\s*=\s*torch\.bfloat16\s*\)", ".to(dtype=torch.float32)", txt)
# Note: We do NOT touch torch.autocast() blocks - on CPU they're auto-disabled
# and modifying them risks breaking indentation/syntax
if txt != txt0:
p.write_text(txt, encoding="utf-8")
print(f" ✅ Patched CPU/FP32: {p.name}")
else:
print(f" ℹ️ Already CPU/FP32-safe: {p.name}")
# Patch both files where they may appear
targets = list(local_dir.rglob("modeling_deepseekocr.py")) + \
list(local_dir.rglob("deepencoder.py"))
if not targets:
raise RuntimeError("Could not find DeepSeek-OCR source files to patch")
for f in targets:
print(f" 🔍 Found file: {f.name}")
patch_file(f)
# Optional: compile check to catch syntax errors early
try:
import py_compile
for f in targets:
py_compile.compile(str(f), doraise=True)
print(f" ✅ Syntax check passed for {len(targets)} file(s)")
except py_compile.PyCompileError as e:
raise RuntimeError(f"Syntax check failed after patch: {e}")
return str(local_dir)
async def get_ocr_model():
"""Lazy load DeepSeek-OCR model with compatibility patching"""
global _ocr_model, _ocr_tokenizer
if _ocr_model is None or _ocr_tokenizer is None:
async with _model_lock:
if _ocr_model is None or _ocr_tokenizer is None:
# Lazy import dependencies
AutoModel, AutoTokenizer = _get_transformers()
torch = _get_torch()
print(f"Loading DeepSeek-OCR model (MAXIMUM QUALITY): {MODEL_NAME}")
print(f" - Base size: {BASE_SIZE}")
print(f" - Image size: {IMAGE_SIZE}")
print(f" - Crop mode: {CROP_MODE}")
# 1) Download & patch; 2) Load from local dir so our patch is used
local_dir = _download_and_patch_model_locally(MODEL_NAME, MODEL_REVISION)
print(" - Loading tokenizer (local, pinned revision)...")
_ocr_tokenizer = AutoTokenizer.from_pretrained(
local_dir,
trust_remote_code=True,
local_files_only=True # Load from local patched directory
)
print(" - Tokenizer loaded successfully")
# Fix pad_token_id warning
if _ocr_tokenizer.pad_token_id is None:
_ocr_tokenizer.pad_token = _ocr_tokenizer.eos_token or _ocr_tokenizer.unk_token
# Load model with compatibility settings
load_kwargs = {
"trust_remote_code": True,
"use_safetensors": True,
"attn_implementation": "eager", # SDPA not supported by this arch
}
# Load from patched local directory
_ocr_model = AutoModel.from_pretrained(
local_dir,
local_files_only=True, # Load from local patched directory
**load_kwargs
).eval()
# Handle device placement (force FP32 on CPU/MPS)
if USE_MPS and torch.backends.mps.is_available():
_ocr_model = _ocr_model.to("mps").to(dtype=torch.float32)
print(" - DeepSeek-OCR on MPS (float32)")
elif USE_GPU and torch.cuda.is_available():
_ocr_model = _ocr_model.cuda().to(torch.bfloat16)
print(" - DeepSeek-OCR on CUDA (bf16)")
else:
_ocr_model = _ocr_model.to(dtype=torch.float32)
print(" - DeepSeek-OCR on CPU (float32)")
# Configure generation to silence warnings
gc = _ocr_model.generation_config
gc.do_sample = False # Greedy decoding
gc.temperature = 1.0 # Don't mix temperature=0 with do_sample=False
if _ocr_tokenizer.pad_token_id is None:
_ocr_tokenizer.pad_token = _ocr_tokenizer.eos_token or _ocr_tokenizer.unk_token
_ocr_model.generation_config.pad_token_id = _ocr_tokenizer.pad_token_id
print(" - Generation config set (do_sample=False, temperature=1.0, pad_token_id set)")
return _ocr_model, _ocr_tokenizer
async def run_deepseek_ocr(
image_path: str,
prompt: str = "<image>\n<|grounding|>Convert the document to markdown with preserved layout.",
use_grounding: bool = True,
job_id: Optional[str] = None,
progress_callback = None,
detect_fields: bool = True
) -> dict:
"""
Run DeepSeek-OCR on an image file with advanced grounding support.
Supports cancellation via job_id and progress updates via callback.
If detect_fields=True, also runs locator queries to detect specific fields:
- Recipe title
- Ingredients list
- Instructions/steps
Returns additional 'field_boxes' with highlighted locations.
"""
# Check for cancellation before starting
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
raise asyncio.CancelledError(f"Job {job_id} was cancelled")
model, tokenizer = await get_ocr_model()
output_path = tempfile.mkdtemp()
try:
# Update progress: Preprocessing (0-10%)
if progress_callback:
await progress_callback(0.05, "Preprocessing image...")
# OCR quality settings - Gundam preset recommended for CPU/Spaces
torch = _get_torch()
if USE_GPU and torch.cuda.is_available():
# GPU: Use maximum quality (Large preset)
actual_base_size = BASE_SIZE
actual_image_size = IMAGE_SIZE
else:
# CPU/Spaces: Use Gundam preset (recommended for CPU to avoid OOM)
actual_base_size = 1024
actual_image_size = 640
print(f" - Using CPU-optimized quality: base_size={actual_base_size}, image_size={actual_image_size}")
# Check for cancellation before inference
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
raise asyncio.CancelledError(f"Job {job_id} was cancelled")
# Update progress: Starting inference (10-90%)
if progress_callback:
await progress_callback(0.10, "Starting OCR inference...")
# Use torch.inference_mode() to reduce overhead on CPU
# Note: We can't interrupt inference mid-process, but we can check before/after
torch = _get_torch()
with torch.inference_mode():
# Check cancellation one more time right before inference (critical point)
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
raise asyncio.CancelledError(f"Job {job_id} was cancelled")
# Estimate inference takes ~80% of time (10-90%)
# We'll update progress during post-processing
# Note: This is a blocking call - once it starts, it runs to completion
# The cancellation will be checked immediately after it returns
result = model.infer(
tokenizer,
prompt=prompt,
image_file=image_path,
output_path=output_path,
base_size=actual_base_size,
image_size=actual_image_size,
crop_mode=CROP_MODE,
save_results=False,
test_compress=False,
)
# Check cancellation immediately after inference completes
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
raise asyncio.CancelledError(f"Job {job_id} was cancelled during inference")
# Check for cancellation after inference
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
raise asyncio.CancelledError(f"Job {job_id} was cancelled")
# Update progress: Post-processing (90-95%)
if progress_callback:
await progress_callback(0.90, "Parsing OCR results...")
# Parse result - DeepSeek-OCR returns structured markdown output
raw_text = result if isinstance(result, str) else str(result)
# Extract structured lines from raw text (before cleaning)
# This parses grounding annotations to get bounding boxes
lines = _parse_deepseek_output(raw_text)
# Update progress: Cleaning output (95-98%)
if progress_callback:
await progress_callback(0.95, "Cleaning output...")
# Convert to clean markdown (remove tags, keep text)
clean_markdown = _deepseek_to_markdown(raw_text)
# Detect specific fields using locator pattern if requested
field_boxes = {}
if detect_fields:
if progress_callback:
await progress_callback(0.96, "Detecting recipe fields...")
# Define field detection prompts using locator pattern
field_prompts = {
"title": "<image>\nLocate <|ref|>Recipe title<|/ref|> in the image.",
"ingredients": "<image>\nLocate <|ref|>Ingredients list<|/ref|> in the image.",
"instructions": "<image>\nLocate <|ref|>Instructions or steps<|/ref|> in the image.",
"quantity": "<image>\nLocate <|ref|>Total amount or servings<|/ref|> in the image.",
"cooking_time": "<image>\nLocate <|ref|>Cooking time or prep time<|/ref|> in the image.",
}
torch = _get_torch()
for field_name, locator_prompt in field_prompts.items():
try:
# Check for cancellation
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
break
# Check cancellation right before each field detection
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
raise asyncio.CancelledError(f"Job {job_id} was cancelled during field detection")
# Run locator query for this field
with torch.inference_mode():
locator_result = model.infer(
tokenizer,
prompt=locator_prompt,
image_file=image_path,
output_path=output_path,
base_size=actual_base_size,
image_size=actual_image_size,
crop_mode=CROP_MODE,
save_results=False,
test_compress=False,
)
# Check cancellation immediately after locator inference
if job_id:
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
raise asyncio.CancelledError(f"Job {job_id} was cancelled after field detection")
# Parse locator boxes from result
locator_text = locator_result if isinstance(locator_result, str) else str(locator_result)
locator_boxes = _parse_locator_boxes(locator_text, field_name)
if locator_boxes:
field_boxes[field_name] = locator_boxes
except Exception as e:
print(f" ⚠️ Field detection for {field_name} failed: {e}")
continue # Continue with other fields
# Update progress: Done (100%)
if progress_callback:
await progress_callback(1.0, "Complete")
return {
"text": clean_markdown, # Return clean markdown without tags
"lines": lines, # Structured lines with bounding boxes
"field_boxes": field_boxes if detect_fields else {}, # Field-specific highlight boxes
}
except Exception as e:
print(f"DeepSeek-OCR error: {e}")
import traceback
traceback.print_exc()
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"OCR processing failed: {str(e)}",
)
finally:
# Cleanup temp directory
try:
import shutil
if os.path.exists(output_path):
shutil.rmtree(output_path)
except:
pass
def _parse_locator_boxes(locator_text: str, field_name: str) -> list:
"""
Parse bounding boxes from locator pattern output.
Locator returns: <|ref|>FIELD_NAME<|/ref|><|det|>[x1,y1,x2,y2]<|/det|>
"""
import re
boxes = []
# Pattern: <|ref|>FIELD<|/ref|><|det|>[x1,y1,x2,y2]<|/det|>
# Note: Locator uses [x1,y1,x2,y2] format (not [x,y,w,h])
locator_pattern = re.compile(
r'<\|ref\|>[^<]*<\|\/ref\|><\|det\|>\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]<\|\/det\|>',
re.DOTALL
)
for match in locator_pattern.finditer(locator_text):
x1 = int(match.group(1))
y1 = int(match.group(2))
x2 = int(match.group(3))
y2 = int(match.group(4))
# Convert to [x0, y0, x1, y1] format (top-left to bottom-right)
boxes.append({
"bbox": [x1, y1, x2, y2],
"field": field_name,
"confidence": 0.95
})
return boxes
def _deepseek_to_markdown(s: str) -> str:
"""
Convert DeepSeek-OCR tagged output to clean Markdown.
Removes grounding tags (<|ref|>...</|ref|>) and bbox annotations (<|det|>[...]<|/det|>)
while preserving the text content.
"""
import re
# Remove bbox annotations first
det_pattern = re.compile(r'<\|det\|>\[[^\]]*\]<\|\/det\|>', re.DOTALL)
s = det_pattern.sub('', s)
# Remove ref tags
ref_pattern = re.compile(r'<\|ref\|>.*?<\|\/ref\|>', re.DOTALL)
s = ref_pattern.sub('', s)
# Tidy multiple blank lines
s = re.sub(r'\n{3,}', '\n\n', s).strip()
return s
def _parse_deepseek_output(ocr_text: str) -> list:
"""
Extract structured lines from DeepSeek-OCR markdown output.
DeepSeek-OCR returns grounding annotations like:
<|ref|>title<|/ref|><|det|>[[x,y,w,h]]<|/det|># Title
We parse these annotations to extract precise bounding boxes.
"""
import re
lines = []
# Pattern to match grounding annotations: <|ref|>TYPE<|/ref|><|det|>[[x,y,w,h]]<|/det|>CONTENT
# Example: <|ref|>title<|/ref|><|det|>[[292, 29, 634, 54]]<|/det|># Taйский карри...
grounding_pattern = re.compile(
r'<\|ref\|>([^<]+)<\|\/ref\|><\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|\/det\|>(.*?)(?=<\|ref\||$)',
re.DOTALL
)
text_lines = ocr_text.split('\n')
found_grounding = False
# Try to parse grounding annotations first
for line in text_lines:
matches = list(grounding_pattern.finditer(line))
if matches:
found_grounding = True
for match in matches:
type_name = match.group(1).strip()
x = int(match.group(2))
y = int(match.group(3))
w = int(match.group(4)) # Width
h = int(match.group(5)) # Height
content = match.group(6).strip()
# Remove markdown formatting from content
content = re.sub(r'^#+\s*', '', content) # Remove headers
content = re.sub(r'\*\*', '', content) # Remove bold
content = re.sub(r'\*', '', content) # Remove italic
content = content.strip()
if content:
lines.append({
"bbox": [x, y, x + w, y + h], # Convert [x, y, w, h] to [x0, y0, x1, y1]
"text": content,
"conf": 0.95,
"type": type_name, # title, text, sub_title, etc.
})
# Fallback: if no grounding annotations found, parse markdown as before
if not found_grounding:
y_offset = 0
line_height = 24
for line_idx, line in enumerate(text_lines):
stripped = line.strip()
if not stripped:
y_offset += line_height // 2
continue
# Remove grounding annotations if present (but use fallback positioning)
stripped = re.sub(r'<\|ref\|>[^<]+<\|\/ref\|><\|det\|>\[\[.*?\]\]<\|\/det\|>', '', stripped)
stripped = stripped.strip()
if not stripped:
continue
# Handle markdown tables (| separated)
if '|' in stripped and stripped.count('|') >= 2:
cells = [cell.strip() for cell in stripped.split('|') if cell.strip()]
for cell_idx, cell in enumerate(cells):
if cell:
lines.append({
"bbox": [cell_idx * 200, y_offset, (cell_idx + 1) * 200, y_offset + line_height],
"text": cell,
"conf": 0.95,
})
y_offset += line_height
# Handle markdown lists (-, *, 1., etc.)
elif stripped.startswith(('-', '*', '+')) or (len(stripped) > 2 and stripped[1] == '.'):
text = stripped.lstrip('-*+').lstrip('0123456789.').strip()
if text:
lines.append({
"bbox": [40, y_offset, 1000, y_offset + line_height],
"text": text,
"conf": 0.95,
})
y_offset += line_height
# Handle headers (# ## ###)
elif stripped.startswith('#'):
header_level = len(stripped) - len(stripped.lstrip('#'))
text = stripped.lstrip('#').strip()
if text:
header_height = line_height + (header_level * 4)
lines.append({
"bbox": [0, y_offset, 1000, y_offset + header_height],
"text": text,
"conf": 0.95,
})
y_offset += header_height
# Regular text line
else:
estimated_width = min(len(stripped) * 8, 1000)
lines.append({
"bbox": [0, y_offset, estimated_width, y_offset + line_height],
"text": stripped,
"conf": 0.95,
})
y_offset += line_height
return lines
api_key_header = APIKeyHeader(name=API_KEY_HEADER_NAME, auto_error=False)
_rate_limit_lock = asyncio.Lock()
_request_log: DefaultDict[str, Deque[float]] = defaultdict(deque)
def ensure_upload_is_safe(file: UploadFile) -> None:
# Check content type from header
content_type = (file.content_type or "").lower()
# Also check file extension as fallback (browsers sometimes send application/octet-stream)
filename = (file.filename or "").lower()
extension = filename.split('.')[-1] if '.' in filename else ""
allowed_extensions = {'jpg', 'jpeg', 'png', 'webp'}
# Allow if content type matches OR extension matches
content_type_valid = content_type in ALLOWED_CONTENT_TYPES
extension_valid = extension in allowed_extensions
if not content_type_valid and not extension_valid:
raise HTTPException(
status_code=status.HTTP_415_UNSUPPORTED_MEDIA_TYPE,
detail=f"Unsupported file type. Content-Type: {content_type}, Extension: {extension}. Allowed: {', '.join(ALLOWED_CONTENT_TYPES)}",
)
file.file.seek(0, os.SEEK_END)
size = file.file.tell()
file.file.seek(0)
if size > MAX_UPLOAD_BYTES:
raise HTTPException(
status_code=status.HTTP_413_REQUEST_ENTITY_TOO_LARGE,
detail="Uploaded file exceeds size limit",
)
async def verify_api_key(api_key: Optional[str] = Depends(api_key_header)) -> str:
# Skip API key verification in development mode
if not REQUIRE_API_KEY:
return api_key or SERVICE_API_KEY
# Enforce API key in production
if not api_key or not secrets.compare_digest(api_key, SERVICE_API_KEY):
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
)
return api_key
async def enforce_rate_limit(
request: Request, api_key: str = Depends(verify_api_key)
) -> None:
if RATE_LIMIT_REQUESTS <= 0:
return
identifier = api_key or (request.client.host if request.client else "anonymous")
now = monotonic()
async with _rate_limit_lock:
window = _request_log[identifier]
while window and now - window[0] > RATE_LIMIT_WINDOW_SECONDS:
window.popleft()
if len(window) >= RATE_LIMIT_REQUESTS:
raise HTTPException(
status_code=status.HTTP_429_TOO_MANY_REQUESTS,
detail="Rate limit exceeded",
)
window.append(now)
def _decode_image(file: UploadFile):
"""Decode uploaded image file to PIL Image"""
data = file.file.read()
if not data:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Uploaded file is empty",
)
# Save to temp file for DeepSeek-OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
tmp_file.write(data)
tmp_path = tmp_file.name
try:
img = Image.open(tmp_path).convert("RGB")
return img, tmp_path
except Exception as e:
os.unlink(tmp_path)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Unable to decode image: {str(e)}",
)
async def load_img(file: UploadFile):
ensure_upload_is_safe(file)
file.file.seek(0)
img, img_path = _decode_image(file)
return img, img_path
def _parse_json_field(name: str, raw: str, expected_type: type) -> Any:
try:
value = json.loads(raw)
except json.JSONDecodeError as exc:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Invalid {name} payload",
) from exc
if not isinstance(value, expected_type):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} must be a {expected_type.__name__}",
)
return value
def _validate_safe_json(value: Any, name: str, depth: int = 0) -> None:
if depth > MAX_JSON_DEPTH:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} is too deeply nested",
)
if isinstance(value, dict):
if len(value) > MAX_JSON_DICT_KEYS:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} has too many keys",
)
for key, item in value.items():
if not isinstance(key, str) or len(key) > 64:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains an invalid key",
)
_validate_safe_json(item, f"{name}.{key}", depth + 1)
return
if isinstance(value, list):
if len(value) > MAX_JSON_LIST_ITEMS:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} has too many entries",
)
for idx, item in enumerate(value):
_validate_safe_json(item, f"{name}[{idx}]", depth + 1)
return
if isinstance(value, str):
if len(value) > MAX_JSON_STRING_LENGTH:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains an oversized string",
)
if any(ord(ch) < 32 and ch not in (9, 10, 13) for ch in value):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains control characters",
)
return
if isinstance(value, bool) or value is None:
return
if isinstance(value, (int, float)):
if isinstance(value, float) and not math.isfinite(value):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} must contain finite numbers",
)
return
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains an unsupported value type",
)
def _sanitize_label(name: str, value: str) -> str:
if not isinstance(value, str):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} must be a string",
)
trimmed = value.strip()
if not trimmed:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} cannot be empty",
)
if len(trimmed) > 128:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} is too long",
)
if any(ord(ch) < 32 for ch in trimmed):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains invalid characters",
)
return trimmed
def _parse_parent_bbox(raw: str, width: int, height: int) -> list[float]:
values = _parse_json_field("parent_bbox", raw, list)
if len(values) != 4:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox must have four values",
)
coords: list[float] = []
for value in values:
try:
coord = float(value)
except (TypeError, ValueError) as exc:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox must contain numeric values",
) from exc
if not math.isfinite(coord):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox must contain finite coordinates",
)
coords.append(coord)
x1, y1, x2, y2 = coords
if x2 <= x1 or y2 <= y1:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox coordinates are invalid",
)
if x1 < 0 or y1 < 0 or x2 > width or y2 > height:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox is outside the image bounds",
)
return coords
def _parse_settings(raw: str) -> dict:
settings = _parse_json_field("settings", raw, dict)
if len(settings) > 50:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="settings payload is too large",
)
_validate_safe_json(settings, "settings")
return settings
def _parse_rules(raw: str) -> list:
rules = _parse_json_field("rules", raw, list)
if len(rules) > 100:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="rules payload is too large",
)
for idx, rule in enumerate(rules):
if not isinstance(rule, dict):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="rules entries must be objects",
)
_validate_safe_json(rule, f"rules[{idx}]")
return rules
@app.options("/ocr")
async def ocr_options():
"""Handle CORS preflight requests (required by HuggingFace Spaces)"""
return {"message": "OK"}
@app.options("/api/predict")
async def predict_options():
"""Handle CORS preflight for HuggingFace Spaces auto-routing"""
return {"message": "OK"}
@app.post("/ocr")
@app.post("/api/predict") # HuggingFace Spaces may auto-route POST requests here
async def ocr_page(
file: UploadFile,
job_id: Optional[str] = Form(None),
background_tasks: BackgroundTasks = None,
_: None = Depends(enforce_rate_limit),
):
"""OCR endpoint using DeepSeek-OCR - supports async job processing with SSE streaming"""
# Import progress bus
try:
from progress_bus import bus
except ImportError:
# Fallback if progress_bus not available
bus = None
# Generate job_id if not provided
if not job_id:
if bus:
job_id = bus.new_job()
else:
job_id = secrets.token_urlsafe(16)
# Initialize job status (for polling compatibility)
async with _jobs_lock:
_jobs[job_id] = {
"status": "processing",
"progress": 0.0,
"message": "Initializing...",
"result": None,
"error": None
}
_cancellation_tokens[job_id] = asyncio.Event()
# Start background task for async processing
if background_tasks and bus:
# Async mode: return job_id immediately, process in background
background_tasks.add_task(run_ocr_job_async, job_id, file, bus)
return {"job_id": job_id, "status": "processing", "message": "Job started - use /progress/{job_id} for SSE or /jobs/{job_id}/status for polling"}
# Synchronous mode: process immediately
img, img_path = await load_img(file)
try:
# Save PIL image to temporary file for DeepSeek-OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
img.save(tmp_file, 'JPEG', quality=95)
tmp_img_path = tmp_file.name
try:
# Progress callback to update job status (async-safe)
async def update_progress(progress: float, message: str):
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["progress"] = progress
_jobs[job_id]["message"] = message
# Also send to SSE bus if available
if bus:
await bus.send(job_id, pct=progress * 100, stage=message.lower().replace(" ", "_"))
# Start OCR processing (can be cancelled)
await update_progress(0.0, "Starting OCR...")
# Check for cancellation before processing
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
async with _jobs_lock:
_jobs[job_id]["status"] = "cancelled"
_jobs[job_id]["message"] = "Job was cancelled"
raise HTTPException(status_code=499, detail="Job was cancelled")
# Use grounding prompt for better structure extraction
result = await run_deepseek_ocr(
tmp_img_path,
prompt="<image>\n<|grounding|>Convert the document to markdown with preserved layout.",
use_grounding=True,
job_id=job_id,
progress_callback=update_progress
)
# Update job with result
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["status"] = "completed"
_jobs[job_id]["progress"] = 1.0
_jobs[job_id]["result"] = result
_jobs[job_id]["message"] = "Complete"
# Finalize SSE stream if available
if bus:
await bus.finalize(job_id, pct=100, stage="done", **result)
return {"job_id": job_id, **result}
except asyncio.CancelledError as e:
# Job was cancelled
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["status"] = "cancelled"
_jobs[job_id]["message"] = "Job was cancelled"
_cancellation_tokens.pop(job_id, None)
remove_cancel_flag(job_id) # Cleanup cancel registry
raise HTTPException(status_code=499, detail="Job was cancelled")
except Exception as e:
# Log the error and update job status
error_msg = str(e)
print(f"OCR processing error: {error_msg}")
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["status"] = "failed"
_jobs[job_id]["error"] = error_msg
_jobs[job_id]["message"] = f"Error: {error_msg}"
# Check if it's a model loading issue
if "matplotlib" in error_msg or "torchvision" in error_msg or "ImportError" in error_msg:
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail=f"OCR model dependencies missing: {error_msg}. Please install required packages."
)
elif "Connection" in error_msg or "timeout" in error_msg.lower():
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail=f"OCR service temporarily unavailable: {error_msg}"
)
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"OCR processing failed: {error_msg}"
)
finally:
if os.path.exists(tmp_img_path):
os.unlink(tmp_img_path)
finally:
if os.path.exists(img_path):
os.unlink(img_path)
async def run_ocr_job_async(job_id: str, file: UploadFile, bus):
"""Background task to run OCR job with SSE updates"""
img_path = None
tmp_img_path = None
try:
# Update progress: Decode (0-5%)
await bus.send(job_id, pct=1, stage="queued")
img, img_path = await load_img(file)
await bus.send(job_id, pct=5, stage="decode")
# Save PIL image to temporary file for DeepSeek-OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
img.save(tmp_file, 'JPEG', quality=95)
tmp_img_path = tmp_file.name
# Update progress: Preprocess (5-20%)
async with _jobs_lock:
if job_id not in _jobs:
return # Job was cancelled before starting
_jobs[job_id]["progress"] = 0.05
_jobs[job_id]["message"] = "Preprocessing image..."
await bus.send(job_id, pct=20, stage="preprocess")
# Progress callback that updates both job status and SSE
async def update_progress(progress: float, message: str):
# Update job status
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["progress"] = progress
_jobs[job_id]["message"] = message
# Send to SSE stream
pct = progress * 100
stage_map = {
"preprocessing": "preprocess",
"starting ocr inference": "encoding",
"parsing ocr results": "postprocess",
"cleaning output": "postprocess",
"complete": "done"
}
stage = stage_map.get(message.lower(), message.lower().replace(" ", "_"))
await bus.send(job_id, pct=pct, stage=stage, msg=message)
# Check for cancellation
async with _jobs_lock:
cancel_event = _cancellation_tokens.get(job_id)
if cancel_event and cancel_event.is_set():
await bus.error(job_id, "Job was cancelled")
return
# Run OCR
result = await run_deepseek_ocr(
tmp_img_path,
prompt="<image>\n<|grounding|>Convert the document to markdown with preserved layout.",
use_grounding=True,
job_id=job_id,
progress_callback=update_progress
)
# Update job status
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["status"] = "completed"
_jobs[job_id]["progress"] = 1.0
_jobs[job_id]["result"] = result
_jobs[job_id]["message"] = "Complete"
# Finalize SSE stream
await bus.finalize(job_id, pct=100, stage="done", **result)
except asyncio.CancelledError:
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["status"] = "cancelled"
_jobs[job_id]["message"] = "Job was cancelled"
await bus.error(job_id, "Job was cancelled")
except Exception as e:
error_msg = str(e)
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["status"] = "failed"
_jobs[job_id]["error"] = error_msg
_jobs[job_id]["message"] = f"Error: {error_msg}"
await bus.error(job_id, error_msg)
finally:
# Cleanup temp files
if tmp_img_path and os.path.exists(tmp_img_path):
os.unlink(tmp_img_path)
if img_path and os.path.exists(img_path):
os.unlink(img_path)
@app.get("/progress/{job_id}")
async def get_progress_stream(job_id: str, request: Request):
"""SSE stream for real-time OCR progress updates with client disconnect detection"""
try:
from progress_bus import bus
except ImportError:
raise HTTPException(status_code=503, detail="SSE streaming not available")
async def gen_with_disconnect_check():
"""Generator that checks for client disconnect and auto-cancels"""
try:
async for event in bus.stream(job_id):
# Check if client disconnected
if await request.is_disconnected():
# Auto-cancel job on disconnect (optional but recommended)
cancel_job(job_id)
if job_id in _cancellation_tokens:
_cancellation_tokens[job_id].set()
async with _jobs_lock:
if job_id in _jobs:
_jobs[job_id]["status"] = "cancelled"
_jobs[job_id]["message"] = "Client disconnected"
break
yield event
except asyncio.CancelledError:
# Stream was cancelled
cancel_job(job_id)
if job_id in _cancellation_tokens:
_cancellation_tokens[job_id].set()
return StreamingResponse(
gen_with_disconnect_check(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
}
)
@app.get("/jobs/{job_id}/status")
async def get_job_status(job_id: str):
"""Get status of an OCR job (polling endpoint)"""
async with _jobs_lock:
if job_id not in _jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = _jobs[job_id]
return {
"job_id": job_id,
"status": job["status"], # processing, completed, failed, cancelled
"progress": job["progress"], # 0.0 to 1.0
"message": job["message"],
"result": job.get("result"),
"error": job.get("error")
}
@app.post("/jobs/{job_id}/cancel")
async def cancel_job_endpoint(job_id: str):
"""Cancel a running OCR job (cooperative cancellation with StoppingCriteria)"""
async with _jobs_lock:
if job_id not in _jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = _jobs[job_id]
# Already finished?
if job["status"] in ("completed", "failed", "cancelled"):
return {"ok": True, "message": f"Job already {job['status']}", "job_id": job_id}
# Set cancellation flag (use cancel_registry for consistency)
success = cancel_job(job_id)
if job_id in _cancellation_tokens:
_cancellation_tokens[job_id].set()
job["status"] = "cancelled"
job["message"] = "Cancellation requested..."
job["progress"] = job.get("progress", 0.0)
# Send cancellation to SSE stream
try:
from progress_bus import bus
await bus.error(job_id, "Job cancelled by user")
except ImportError:
pass
return {"ok": True, "message": "Cancellation requested", "job_id": job_id}
@app.post("/split")
async def split(
file: UploadFile,
parent_bbox: str = Form(...),
splitter: str = Form(...),
schemaType: str = Form(...),
settings: str = Form("{}"),
rules: str = Form("[]"),
_: None = Depends(enforce_rate_limit),
):
"""Split endpoint - uses DeepSeek-OCR for region extraction"""
img, img_path = await load_img(file)
try:
width, height = img.size
# Save image for DeepSeek-OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
img.save(tmp_file, 'JPEG', quality=95)
tmp_img_path = tmp_file.name
try:
parent_box = _parse_parent_bbox(parent_bbox, width, height)
x1, y1, x2, y2 = parent_box
# Crop image to parent bbox
crop_img = img.crop((int(x1), int(y1), int(x2), int(y2)))
crop_path = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg').name
crop_img.save(crop_path, 'JPEG', quality=95)
try:
# Use DeepSeek-OCR with grounding prompt for better structured extraction
prompt = "<image>\n<|grounding|>Convert the document region to markdown with preserved layout."
ocr_result = await run_deepseek_ocr(crop_path, prompt=prompt, use_grounding=True, detect_fields=False)
# Parse OCR result to extract lines
child_lines = ocr_result.get("lines", [])
# Adjust bboxes to parent coordinate space
for line in child_lines:
bbox = line["bbox"]
line["bbox"] = [
bbox[0] + x1,
bbox[1] + y1,
bbox[2] + x1,
bbox[3] + y1,
]
line["blockType"] = "text"
if len(child_lines) > MAX_CHILD_LINES:
child_lines = child_lines[:MAX_CHILD_LINES]
sanitized_splitter = _sanitize_label("splitter", splitter)
sanitized_schema = _sanitize_label("schemaType", schemaType)
parsed_settings = _parse_settings(settings)
parsed_rules = _parse_rules(rules)
raw_text = "\n".join([l["text"] for l in child_lines])
text_truncated = False
if len(raw_text) > 5000:
raw_text = raw_text[:5000]
text_truncated = True
llm_input = {
"schemaType": sanitized_schema,
"splitter": sanitized_splitter,
"page": {"width": width, "height": height},
"parentBox": parent_box,
"rawText": raw_text,
"ocrLines": child_lines,
"rawTextTruncated": text_truncated,
"ocrLinesTruncated": len(child_lines) >= MAX_CHILD_LINES,
"settings": parsed_settings,
"rules": parsed_rules,
}
try:
llm_result = await call_llm_splitter(llm_input)
except ValueError as exc:
raise HTTPException(
status_code=status.HTTP_502_BAD_GATEWAY,
detail=str(exc),
) from exc
return llm_result
finally:
if os.path.exists(crop_path):
os.unlink(crop_path)
finally:
if os.path.exists(tmp_img_path):
os.unlink(tmp_img_path)
finally:
if os.path.exists(img_path):
os.unlink(img_path)
|