Spaces:
Paused
Paused
File size: 40,645 Bytes
6d29b78 9d1bc12 6d29b78 9d1bc12 6228c8b 6d29b78 2e8da0d 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 ea69df1 9d1bc12 ea69df1 9d1bc12 ea69df1 6d29b78 9d1bc12 6d29b78 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 6d29b78 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 02db00d 9d1bc12 6228c8b a42df2c 6228c8b 8826601 9d1bc12 6228c8b 9d1bc12 6228c8b 9d1bc12 6d29b78 9d1bc12 6d29b78 f99be6b 6228c8b 02db00d 6228c8b 02db00d 6228c8b 9d1bc12 6228c8b 9d1bc12 81d6159 8c054ac c9f04dd d419dc7 c9f04dd d419dc7 a038035 d419dc7 a038035 c9f04dd d419dc7 c9f04dd d419dc7 a038035 c9f04dd a038035 d419dc7 c9f04dd 6228c8b c9f04dd f7c01ff e7274da da3e710 e541a81 689e9b3 2314c25 689e9b3 dca5b2f e541a81 dca5b2f 11a45c8 e541a81 e7274da e541a81 11a45c8 e541a81 11a45c8 e7274da e541a81 7b09632 e541a81 e7274da 7b09632 e7274da 7b09632 e541a81 e7274da e541a81 11a45c8 e541a81 11a45c8 e541a81 11a45c8 e7274da 11a45c8 689e9b3 9c8674b 971ff27 689e9b3 971ff27 342566d 971ff27 342566d 971ff27 1eead2e 971ff27 342566d 971ff27 342566d 971ff27 d18408d 971ff27 342566d 971ff27 d6d03b3 342566d 971ff27 342566d d6d03b3 342566d 971ff27 342566d d6d03b3 342566d 971ff27 342566d d6d03b3 4679639 342566d 9c8674b 689e9b3 9c8674b 689e9b3 9c8674b fd1b8e0 9c8674b 6cd5c6f 9c8674b fd1b8e0 689e9b3 9c8674b 689e9b3 9c8674b 689e9b3 fd1b8e0 689e9b3 9c8674b 689e9b3 9c8674b 689e9b3 9c8674b 689e9b3 fd1b8e0 689e9b3 11a45c8 dca5b2f e7274da dca5b2f 4c1d5ac dca5b2f e7274da 7b09632 e7274da 4c1d5ac e7274da 4c1d5ac e7274da 4c1d5ac dca5b2f 4c1d5ac dca5b2f 4c1d5ac e7274da 4c1d5ac dca5b2f f7c01ff dca5b2f ea69df1 f99be6b da3e710 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 8024c78 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 6a9ccac 6228c8b 8024c78 8e89616 869955a 8024c78 869955a 81fb0d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 |
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time
import traceback
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []
# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
global LOGS
print(msg)
LOGS += msg + "\n"
return msg
# ============================================================
# SYSTEM METRICS — LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
try:
log(f"\n===== 🔥 SYSTEM STATS {tag} =====")
# ============= GPU STATS =============
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / 1e9
reserved = torch.cuda.memory_reserved(0) / 1e9
total = torch.cuda.get_device_properties(0).total_memory / 1e9
free = total - allocated
log(f"💠 GPU Total : {total:.2f} GB")
log(f"💠 GPU Allocated : {allocated:.2f} GB")
log(f"💠 GPU Reserved : {reserved:.2f} GB")
log(f"💠 GPU Free : {free:.2f} GB")
# ============= CPU STATS ============
cpu = psutil.cpu_percent()
ram_used = psutil.virtual_memory().used / 1e9
ram_total = psutil.virtual_memory().total / 1e9
log(f"🧠 CPU Usage : {cpu}%")
log(f"🧠 RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
except Exception as e:
log(f"⚠️ Failed to log system stats: {e}")
# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("🔍 Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")
log(f"📌 PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
log(f"📌 PLATFORM : {platform.platform()}")
log(f"📌 TORCH VERSION : {torch.__version__}")
log(f"📌 TRANSFORMERS VERSION : {transformers.__version__}")
log(f"📌 DIFFUSERS VERSION : {diffusers.__version__}")
log(f"📌 CUDA AVAILABLE : {torch.cuda.is_available()}")
log_system_stats("AT STARTUP")
if not torch.cuda.is_available():
raise RuntimeError("❌ CUDA Required")
device = "cuda"
gpu_id = 0
# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False
log("\n===================================================")
log("🧠 MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype : {torch_dtype}")
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
log_system_stats("BEFORE TRANSFORMER LOAD")
# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
"""
Convert a latent tensor to a PIL image using pipe.vae
"""
try:
img_tensor = pipe.vae.decode(latent)
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
pil_img = T.ToPILImage()(img_tensor[0].cpu()) # <--- single image
return pil_img
except Exception as e:
log(f"⚠️ Failed to decode latent: {e}")
# fallback blank image
return Image.new("RGB", (latent.shape[-1]*8, latent.shape[-2]*8), color=(255,255,255))
# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
log(f"\n🔍🔍 FULL TRANSFORMER DEBUG DUMP: {name}")
log("=" * 80)
try:
log(f"Model class : {model.__class__.__name__}")
log(f"DType : {getattr(model, 'dtype', 'unknown')}")
log(f"Device : {next(model.parameters()).device}")
log(f"Requires Grad? : {any(p.requires_grad for p in model.parameters())}")
# Check quantization
if hasattr(model, "is_loaded_in_4bit"):
log(f"4bit Quantization : {model.is_loaded_in_4bit}")
if hasattr(model, "is_loaded_in_8bit"):
log(f"8bit Quantization : {model.is_loaded_in_8bit}")
# Find blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(model, attr):
blocks = getattr(model, attr)
chosen_attr = attr
break
log(f"Block container attr : {chosen_attr}")
if blocks is None:
log("⚠️ No valid block container found.")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but not iterable.")
return
total = len(blocks)
log(f"Total Blocks : {total}")
log("-" * 80)
# Inspect first N blocks
N = min(20, total)
for i in range(N):
block = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}]")
log(f"Class: {block.__class__.__name__}")
# Print submodules
for n, m in block.named_children():
log(f" ├─ {n}: {m.__class__.__name__}")
# Print attention related
if hasattr(block, "attn"):
attn = block.attn
log(f" ├─ Attention: {attn.__class__.__name__}")
log(f" │ Heads : {getattr(attn, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(attn, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(attn, 'attention_backend', 'unknown')}")
# Device + dtype info
try:
dev = next(block.parameters()).device
log(f" ├─ Device : {dev}")
except StopIteration:
pass
try:
dt = next(block.parameters()).dtype
log(f" ├─ DType : {dt}")
except StopIteration:
pass
log("\n🔚 END TRANSFORMER DEBUG DUMP")
log("=" * 80)
except Exception as e:
log(f"❌ ERROR IN INSPECTOR: {e}")
import torch
import time
# ---------- UTILITY ----------
def pretty_header(title):
log("\n\n" + "=" * 80)
log(f"🎛️ {title}")
log("=" * 80 + "\n")
# ---------- MEMORY ----------
def get_vram(prefix=""):
try:
allocated = torch.cuda.memory_allocated() / 1024**2
reserved = torch.cuda.memory_reserved() / 1024**2
log(f"{prefix}Allocated VRAM : {allocated:.2f} MB")
log(f"{prefix}Reserved VRAM : {reserved:.2f} MB")
except:
log(f"{prefix}VRAM: CUDA not available")
# ---------- MODULE INSPECT ----------
def inspect_module(name, module):
pretty_header(f"🔬 Inspecting {name}")
try:
log(f"📦 Class : {module.__class__.__name__}")
log(f"🔢 DType : {getattr(module, 'dtype', 'unknown')}")
log(f"💻 Device : {next(module.parameters()).device}")
log(f"🧮 Params : {sum(p.numel() for p in module.parameters()):,}")
# Quantization state
if hasattr(module, "is_loaded_in_4bit"):
log(f"⚙️ 4-bit QLoRA : {module.is_loaded_in_4bit}")
if hasattr(module, "is_loaded_in_8bit"):
log(f"⚙️ 8-bit load : {module.is_loaded_in_8bit}")
# Attention backend (DiT)
if hasattr(module, "set_attention_backend"):
try:
attn = getattr(module, "attention_backend", None)
log(f"🚀 Attention Backend: {attn}")
except:
pass
# Search for blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(module, attr):
blocks = getattr(module, attr)
chosen_attr = attr
break
log(f"\n📚 Block Container : {chosen_attr}")
if blocks is None:
log("⚠️ No block structure found")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but are not iterable")
return
total = len(blocks)
log(f"🔢 Total Blocks : {total}\n")
# Inspect first 15 blocks
N = min(15, total)
for i in range(N):
blk = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}] — {blk.__class__.__name__}")
for n, m in blk.named_children():
log(f" ├─ {n:<15} {m.__class__.__name__}")
# Attention details
if hasattr(blk, "attn"):
a = blk.attn
log(f" ├─ Attention")
log(f" │ Heads : {getattr(a, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(a, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(a, 'attention_backend', 'unknown')}")
# Device / dtype
try:
log(f" ├─ Device : {next(blk.parameters()).device}")
log(f" ├─ DType : {next(blk.parameters()).dtype}")
except StopIteration:
pass
get_vram(" ▶ ")
except Exception as e:
log(f"❌ Module inspect error: {e}")
# ---------- LORA INSPECTION ----------
def inspect_loras(pipe):
pretty_header("🧩 LoRA ADAPTERS")
try:
if not hasattr(pipe, "lora_state_dict") and not hasattr(pipe, "adapter_names"):
log("⚠️ No LoRA system detected.")
return
if hasattr(pipe, "adapter_names"):
names = pipe.adapter_names
log(f"Available Adapters: {names}")
if hasattr(pipe, "active_adapters"):
log(f"Active Adapters : {pipe.active_adapters}")
if hasattr(pipe, "lora_scale"):
log(f"LoRA Scale : {pipe.lora_scale}")
# LoRA modules
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "modules"):
for name, module in pipe.transformer.named_modules():
if "lora" in name.lower():
log(f" 🔧 LoRA Module: {name} ({module.__class__.__name__})")
except Exception as e:
log(f"❌ LoRA inspect error: {e}")
# ---------- PIPELINE INSPECTOR ----------
def debug_pipeline(pipe):
pretty_header("🚀 FULL PIPELINE DEBUGGING")
try:
log(f"Pipeline Class : {pipe.__class__.__name__}")
log(f"Attention Impl : {getattr(pipe, 'attn_implementation', 'unknown')}")
log(f"Device : {pipe.device}")
except:
pass
get_vram("▶ ")
# Inspect TRANSFORMER
if hasattr(pipe, "transformer"):
inspect_module("Transformer", pipe.transformer)
# Inspect TEXT ENCODER
if hasattr(pipe, "text_encoder") and pipe.text_encoder is not None:
inspect_module("Text Encoder", pipe.text_encoder)
# Inspect UNET (if ZImage pipeline has it)
if hasattr(pipe, "unet"):
inspect_module("UNet", pipe.unet)
# LoRA adapters
inspect_loras(pipe)
pretty_header("🎉 END DEBUG REPORT")
# ============================================================
# LOAD TRANSFORMER — WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("🔧 LOADING TRANSFORMER BLOCK")
log("===================================================")
log("📌 Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")
try:
quant_cfg = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
transformer = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="transformer",
quantization_config=quant_cfg,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Transformer loaded successfully.")
except Exception as e:
log(f"❌ Transformer load failed: {e}")
transformer = None
log_system_stats("AFTER TRANSFORMER LOAD")
if transformer:
inspect_transformer(transformer, "Transformer")
# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("🔧 LOADING TEXT ENCODER")
log("===================================================")
log_system_stats("START TEXT ENCODER LOAD")
try:
quant_cfg2 = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
text_encoder = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="text_encoder",
quantization_config=quant_cfg2,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Text encoder loaded successfully.")
except Exception as e:
log(f"❌ Text encoder load failed: {e}")
text_encoder = None
log_system_stats("AFTER TEXT ENCODER LOAD")
if text_encoder:
inspect_transformer(text_encoder, "Text Encoder")
# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("🔧 BUILDING PIPELINE")
log("===================================================")
log_system_stats("START PIPELINE BUILD")
try:
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
# If transformer supports setting backend, prefer flash-3
try:
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "set_attention_backend"):
pipe.transformer.set_attention_backend("_flash_3")
log("✅ transformer.set_attention_backend('_flash_3') called")
except Exception as _e:
log(f"⚠️ set_attention_backend failed: {_e}")
# default LoRA load (keeps your existing behaviour)
try:
pipe.load_lora_weights("rahul7star/ZImageLora",
weight_name="NSFW/doggystyle_pov.safetensors", adapter_name="lora")
pipe.set_adapters(["lora",], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
except Exception as _e:
log(f"⚠️ Default LoRA load failed: {_e}")
debug_pipeline(pipe)
# pipe.unload_lora_weights()
pipe.to("cuda")
log("✅ Pipeline built successfully.")
LOGS += log("Pipeline build completed.") + "\n"
except Exception as e:
log(f"❌ Pipeline build failed: {e}")
log(traceback.format_exc())
pipe = None
log_system_stats("AFTER PIPELINE BUILD")
# -----------------------------
# Monkey-patch prepare_latents (safe)
# -----------------------------
if pipe is not None and hasattr(pipe, "prepare_latents"):
original_prepare_latents = pipe.prepare_latents
def logged_prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
try:
result_latents = original_prepare_latents(batch_size, num_channels_latents, height, width, dtype, device, generator, latents)
log_msg = f"🔹 prepare_latents called | shape={result_latents.shape}, dtype={result_latents.dtype}, device={result_latents.device}"
if hasattr(self, "_latents_log"):
self._latents_log.append(log_msg)
else:
self._latents_log = [log_msg]
return result_latents
except Exception as e:
log(f"⚠️ prepare_latents wrapper failed: {e}")
raise
# apply patch safely
try:
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
log("✅ prepare_latents monkey-patched")
except Exception as e:
log(f"⚠️ Failed to attach prepare_latents patch: {e}")
else:
log("❌ WARNING: Pipe not initialized or prepare_latents missing; skipping prepare_latents patch")
from PIL import Image
import torch
# --------------------------
# Helper: Safe latent extractor
# --------------------------
def safe_get_latents(pipe, height, width, generator, device, LOGS):
"""
Safely prepare latents for any ZImagePipeline variant.
Returns latents tensor, logs issues instead of failing.
"""
try:
# Determine number of channels
num_channels = 4 # default fallback
if hasattr(pipe, "unet") and hasattr(pipe.unet, "in_channels"):
num_channels = pipe.unet.in_channels
elif hasattr(pipe, "vae") and hasattr(pipe.vae, "latent_channels"):
num_channels = pipe.vae.latent_channels # some pipelines define this
LOGS.append(f"🔹 Using num_channels={num_channels} for latents")
latents = pipe.prepare_latents(
batch_size=1,
num_channels_latents=num_channels,
height=height,
width=width,
dtype=torch.float32,
device=device,
generator=generator,
)
LOGS.append(f"🔹 Latents shape: {latents.shape}, dtype: {latents.dtype}, device: {latents.device}")
return latents
except Exception as e:
LOGS.append(f"⚠️ Latent extraction failed: {e}")
# fallback: guess a safe shape
fallback_channels = 16 # try standard default for ZImage pipelines
latents = torch.randn((1, fallback_channels, height // 8, width // 8),
generator=generator, device=device)
LOGS.append(f"🔹 Using fallback random latents shape: {latents.shape}")
return latents
# --------------------------
# Main generation function (kept exactly as your logic)
# --------------------------
from huggingface_hub import HfApi, HfFolder
import torch
import os
HF_REPO_ID = "rahul7star/Zstudio-latent" # Model repo
HF_TOKEN = HfFolder.get_token() # Make sure you are logged in via `huggingface-cli login`
def upload_latents_to_hf(latent_dict, filename="latents.pt"):
local_path = f"/tmp/{filename}"
torch.save(latent_dict, local_path)
try:
api = HfApi()
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=filename,
repo_id=HF_REPO_ID,
token=HF_TOKEN,
repo_type="model" # since this is a model repo
)
os.remove(local_path)
return f"https://huggingface.co/{HF_REPO_ID}/resolve/main/{filename}"
except Exception as e:
os.remove(local_path)
raise e
import asyncio
import torch
from PIL import Image
async def async_upload_latents(latent_dict, filename, LOGS):
try:
hf_url = await upload_latents_to_hf(latent_dict, filename=filename) # assume this can be async
LOGS.append(f"🔹 All preview latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload all preview latents: {e}")
# this code genetae all frame for latest GPU expseinve bt decide fails sp use this later
@spaces.GPU
def generate_image_all_latents(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cpu" # FORCE CPU
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
last_four_latents = [] # we only upload 4
# --------------------------------------------------
# LATENT PREVIEW GENERATION (CPU MODE)
# --------------------------------------------------
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
latents = latents.to("cpu") # keep EVERYTHING CPU
timestep_count = len(pipe.scheduler.timesteps)
preview_every = max(1, timestep_count // 10)
for i, t in enumerate(pipe.scheduler.timesteps):
# -------------- decode latent preview --------------
try:
with torch.no_grad():
latent_cpu = latents.to(pipe.vae.dtype) # match VAE dtype
decoded = pipe.vae.decode(latent_cpu).sample # [1,3,H,W]
decoded = (decoded / 2 + 0.5).clamp(0, 1)
decoded = decoded[0].permute(1,2,0).cpu().numpy()
latent_img = Image.fromarray((decoded * 255).astype("uint8"))
except Exception:
latent_img = placeholder
LOGS.append("⚠️ Latent preview decode failed.")
latent_gallery.append(latent_img)
# store last 4 latent states
if len(last_four_latents) >= 4:
last_four_latents.pop(0)
last_four_latents.append(latents.cpu().clone())
# UI preview yields
if i % preview_every == 0:
yield None, latent_gallery, LOGS
# --------------------------------------------------
# UPLOAD LAST 4 LATENTS (SYNC)
# --------------------------------------------------
try:
upload_dict = {
"last_4_latents": last_four_latents,
"prompt": prompt,
"seed": seed
}
hf_url = upload_latents_to_hf(
upload_dict,
filename=f"latents_last4_{seed}.pt"
)
LOGS.append(f"🔹 Uploaded last 4 latents: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --------------------------------------------------
# FINAL IMAGE - UNTOUCHED
# --------------------------------------------------
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
yield placeholder, latent_gallery, LOGS
@spaces.GPU
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
cpu_device = "cpu"
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
last_latents = [] # store last 5 preview latents on CPU
try:
# --- Initial latents ---
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
latents = latents.float().to(cpu_device) # move to CPU
num_previews = min(10, steps)
preview_indices = torch.linspace(0, steps - 1, num_previews).long()
for i, step_idx in enumerate(preview_indices):
try:
with torch.no_grad():
# --- Z-Image Turbo-style denoise simulation ---
t = 1.0 - (i / num_previews) # linear decay [1.0 -> 0.0]
noise_scale = t ** 0.5 # reduce noise over steps (sqrt for smoother)
denoise_latent = latents * t + torch.randn_like(latents) * noise_scale
# Move to VAE device & dtype
denoise_latent = denoise_latent.to(pipe.vae.device).to(pipe.vae.dtype)
# Decode latent to image
decoded = pipe.vae.decode(denoise_latent, return_dict=False)[0]
decoded = (decoded / 2 + 0.5).clamp(0, 1)
decoded = decoded.cpu().permute(0, 2, 3, 1).float().numpy()
decoded = (decoded * 255).round().astype("uint8")
latent_img = Image.fromarray(decoded[0])
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
# Keep last 5 latents only
last_latents.append(denoise_latent.cpu().clone())
if len(last_latents) > 5:
last_latents.pop(0)
# Show only last 5 previews in UI
yield None, latent_gallery[-5:], LOGS
# Optionally: upload last 5 latents
# latent_dict = {"latents": last_latents, "prompt": prompt, "seed": seed}
# hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_last5_{seed}.pt")
# LOGS.append(f"🔹 Last 5 latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery[-5:], LOGS
# --- Final image on GPU ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img)
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery[-5:] + [final_img], LOGS # last 5 previews + final
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery[-5:] + [placeholder], LOGS
# this is astable vesopn tha can gen final and a noise to latent
@spaces.GPU
def generate_image_verygood_realnoise(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
latents = latents.float() # keep float32 until decode
num_previews = min(10, steps)
preview_steps = torch.linspace(0, 1, num_previews)
for alpha in preview_steps:
try:
with torch.no_grad():
# Simulate denoising progression like Z-Image Turbo
preview_latent = latents * alpha + latents * 0 # optional: simple progression
# Move to same device and dtype as VAE
preview_latent = preview_latent.to(pipe.vae.device).to(pipe.vae.dtype)
# Decode
decoded = pipe.vae.decode(preview_latent, return_dict=False)[0]
# Convert to PIL following same logic as final image
decoded = (decoded / 2 + 0.5).clamp(0, 1)
decoded = decoded.cpu().permute(0, 2, 3, 1).float().numpy()
decoded = (decoded * 255).round().astype("uint8")
latent_img = Image.fromarray(decoded[0])
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
# DO NOT TOUCH this is astable vesopn tha can gen final and a noise to latent with latent upload to repo
@spaces.GPU
def generate_image_safe(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews in a loop ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
# Convert latents to float32 if necessary
if latents.dtype != torch.float32:
latents = latents.float()
# Loop for multiple previews before final image
num_previews = min(10, steps) # show ~10 previews
preview_steps = torch.linspace(0, 1, num_previews)
for i, alpha in enumerate(preview_steps):
try:
with torch.no_grad():
# Simple noise interpolation for preview (simulate denoising progress)
preview_latent = latents * alpha + torch.randn_like(latents) * (1 - alpha)
# Decode to PIL
latent_img_tensor = pipe.vae.decode(preview_latent).sample # [1,3,H,W]
latent_img_tensor = (latent_img_tensor / 2 + 0.5).clamp(0, 1)
latent_img_tensor = latent_img_tensor.cpu().permute(0, 2, 3, 1)[0]
latent_img = Image.fromarray((latent_img_tensor.numpy() * 255).astype('uint8'))
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS # update Gradio with intermediate preview
# Save final latents to HF
latent_dict = {"latents": latents.cpu(), "prompt": prompt, "seed": seed}
try:
hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_{seed}.pt")
LOGS.append(f"🔹 Latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched standard pipeline ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview if needed
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
with gr.Blocks(title="Z-Image-Turbo") as demo:
gr.Markdown("# 🎨 DO NOT RUN THIS ")
with gr.Tabs():
with gr.TabItem("Image & Latents"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
seed = gr.Number(value=42, label="Seed")
run_btn = gr.Button("Generate Image")
with gr.Column(scale=1):
final_image = gr.Image(label="Final Image")
latent_gallery = gr.Gallery(
label="Latent Steps", columns=4, height=256, preview=True
)
with gr.TabItem("Logs"):
logs_box = gr.Textbox(label="All Logs", lines=25)
# New UI: LoRA repo textbox, dropdown, refresh & rebuild
with gr.Row():
lora_repo = gr.Textbox(label="LoRA Repo (HF id)", value="rahul7star/ZImageLora", placeholder="e.g. rahul7star/ZImageLora")
lora_dropdown = gr.Dropdown(choices=[], label="LoRA files (from local cache)")
refresh_lora_btn = gr.Button("Refresh LoRA List")
rebuild_pipe_btn = gr.Button("Rebuild pipeline (use selected LoRA)")
# Refresh callback: repopulate dropdown from repo text
def refresh_lora_list(repo_name):
try:
files = list_loras_from_repo(repo_name)
if not files:
return gr.update(choices=[], value=None)
return gr.update(choices=files, value=files[0])
except Exception as e:
log(f"⚠️ refresh_lora_list failed: {e}")
return gr.update(choices=[], value=None)
refresh_lora_btn.click(refresh_lora_list, inputs=[lora_repo], outputs=[lora_dropdown])
# Rebuild callback: build pipeline with selected lora file path (if any)
def rebuild_pipeline_with_lora(lora_path, repo_name):
global pipe, LOGS
try:
log(f"🔄 Rebuilding pipeline using LoRA repo={repo_name} file={lora_path}")
# call existing logic to rebuild: attempt to create new pipeline then load lora file
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
# try set backend
try:
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "set_attention_backend"):
pipe.transformer.set_attention_backend("_flash_3")
except Exception as _e:
log(f"⚠️ set_attention_backend failed during rebuild: {_e}")
# load selected lora if provided
if lora_path:
weight_name_to_use = None
# If dropdown provided a relative-style path (contains a slash or no leading /),
# use it directly as weight_name (HF expects "path/inside/repo.safetensors")
if ("/" in lora_path) and not os.path.isabs(lora_path):
weight_name_to_use = lora_path
else:
# It might be an absolute path in cache; try to compute relative path to repo cache root
abs_path = lora_path if os.path.isabs(lora_path) else None
if abs_path and os.path.exists(abs_path):
# attempt to find repo-root-ish substring in abs_path
repo_variants = [
repo_name.replace("/", "--"),
repo_name.replace("/", "-"),
repo_name.replace("/", "_"),
repo_name.split("/")[-1],
]
chosen_base = None
for v in repo_variants:
idx = abs_path.find(v)
if idx != -1:
chosen_base = abs_path[: idx + len(v)]
break
if chosen_base:
try:
rel = os.path.relpath(abs_path, chosen_base)
if rel and not rel.startswith(".."):
weight_name_to_use = rel.replace(os.sep, "/")
except Exception:
weight_name_to_use = None
# fallback to basename
if weight_name_to_use is None:
weight_name_to_use = os.path.basename(lora_path)
# Now attempt to load
try:
pipe.load_lora_weights(repo_name or "rahul7star/ZImageLora",
weight_name=weight_name_to_use,
adapter_name="lora")
pipe.set_adapters(["lora"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
log(f"✅ Loaded LoRA weight: {weight_name_to_use} from repo {repo_name}")
except Exception as _e:
log(f"⚠️ Failed to load selected LoRA during rebuild using weight_name='{weight_name_to_use}': {_e}")
# as last resort, try loading using basename
try:
fallback_name = os.path.basename(lora_path)
pipe.load_lora_weights(repo_name or "rahul7star/ZImageLora",
weight_name=fallback_name,
adapter_name="lora")
pipe.set_adapters(["lora"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
log(f"✅ Fallback loaded LoRA weight basename: {fallback_name}")
except Exception as _e2:
log(f"❌ Fallback LoRA load also failed: {_e2}")
# finalize
debug_pipeline(pipe)
pipe.to("cuda")
# re-attach monkey patch safely
if pipe is not None and hasattr(pipe, "prepare_latents"):
try:
original_prepare = pipe.prepare_latents
def logged_prepare(self, *args, **kwargs):
lat = original_prepare(*args, **kwargs)
msg = f"🔹 prepare_latents called | shape={lat.shape}, dtype={lat.dtype}"
if hasattr(self, "_latents_log"):
self._latents_log.append(msg)
else:
self._latents_log = [msg]
return lat
pipe.prepare_latents = logged_prepare.__get__(pipe)
log("✅ Re-applied prepare_latents monkey patch after rebuild")
except Exception as _e:
log(f"⚠️ Could not re-apply prepare_latents patch: {_e}")
return "\n".join([LOGS, "Rebuild complete."])
except Exception as e:
log(f"❌ Rebuild pipeline failed: {e}")
log(traceback.format_exc())
return "\n".join([LOGS, f"Rebuild failed: {e}"])
rebuild_pipe_btn.click(rebuild_pipeline_with_lora, inputs=[lora_dropdown, lora_repo], outputs=[logs_box])
# Wire the button AFTER all components exist
run_btn.click(
generate_image,
inputs=[prompt, height, width, steps, seed],
outputs=[final_image, latent_gallery, logs_box]
)
demo.launch() |