umair894's picture
Create app.py
16d1faf verified
raw
history blame
859 Bytes
import gradio as gr
import joblib
import numpy as np
import sklearn
# Load the saved model
loaded_model = joblib.load('iris_model.sav')
def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
prediction = loaded_model.predict(input_data)[0]
iris_classes = ['setosa', 'versicolor', 'virginica']
return iris_classes[prediction]
iface = gr.Interface(
fn=predict_iris,
inputs=[
gr.Number(label="Sepal Length"),
gr.Number(label="Sepal Width"),
gr.Number(label="Petal Length"),
gr.Number(label="Petal Width")
],
outputs=gr.Textbox(label="Predicted Iris Class"),
title="Iris Flower Classification",
description="Enter sepal and petal measurements to predict the Iris species."
)
iface.launch()