sam3-demo / app.py
Yanlin Zhang
add app.py
899327c
raw
history blame
12.7 kB
"""
Vehicle trajectory extractor powered by SAM3.
The app takes an aerial video, segments small and large vehicles frame-by-frame
with text prompts (`small-vehicle`, `large-vehicle`), and draws their
trajectories on top of the footage.
"""
from __future__ import annotations
import math
import os
import tempfile
import uuid
from dataclasses import dataclass
from typing import Dict, List, Sequence, Tuple
import cv2
import gradio as gr
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModel
# -----------------------------------------------------------------------------
# Configuration
# -----------------------------------------------------------------------------
MODEL_ID = "facebook/sam3"
TEXT_PROMPTS = ["small-vehicle", "large-vehicle"]
MIN_MASK_PIXELS = 150 # filter spurious detections
MAX_TRACK_GAP = 3 # frames
DEFAULT_FRAME_STRIDE = 5
MAX_PROCESSED_FRAMES = 720
CLASS_COLORS: Dict[str, Tuple[int, int, int]] = {
"small-vehicle": (20, 148, 245), # RGB
"large-vehicle": (255, 120, 30),
}
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
# -----------------------------------------------------------------------------
# Model + processor
# -----------------------------------------------------------------------------
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModel.from_pretrained(MODEL_ID, torch_dtype=DTYPE).to(DEVICE)
model.eval()
# -----------------------------------------------------------------------------
# Tracking utilities
# -----------------------------------------------------------------------------
@dataclass
class Track:
track_id: int
label: str
points: List[Tuple[int, float, float]]
last_frame: int
score: float | None
def _post_process(outputs, height: int, width: int):
target_sizes = [(height, width)]
if hasattr(processor, "post_process_instance_segmentation"):
return processor.post_process_instance_segmentation(
outputs=outputs,
target_sizes=target_sizes,
threshold=0.35,
mask_threshold=0.4,
overlap_mask_area_threshold=0.5,
)[0]
if hasattr(processor, "post_process_semantic_segmentation"):
segmentation = processor.post_process_semantic_segmentation(
outputs=outputs,
target_sizes=target_sizes,
)[0]
return {
"masks": segmentation.unsqueeze(0),
"scores": torch.ones(1),
"labels": torch.zeros(1, dtype=torch.int64),
}
raise gr.Error(
"This version of transformers does not expose SAM3 post-processing helpers. "
"Please ensure transformers>=4.46.0 is installed."
)
def _extract_detections(frame_rgb: np.ndarray) -> List[Dict]:
pil_image = Image.fromarray(frame_rgb)
detections: List[Dict] = []
for label in TEXT_PROMPTS:
inputs = processor(images=pil_image, text=label, return_tensors="pt")
inputs = {
k: (v.to(DEVICE) if isinstance(v, torch.Tensor) else v)
for k, v in inputs.items()
}
with torch.inference_mode():
outputs = model(**inputs)
processed = _post_process(outputs, pil_image.height, pil_image.width)
masks = processed.get("masks", [])
scores = processed.get("scores", [None] * len(masks))
for mask_tensor, score in zip(masks, scores):
mask_np = mask_tensor.squeeze().detach().cpu().numpy()
if mask_np.ndim == 3:
mask_np = mask_np[0]
binary_mask = mask_np > 0.5
area = int(binary_mask.sum())
if area < MIN_MASK_PIXELS:
continue
ys, xs = np.nonzero(binary_mask)
if len(xs) == 0:
continue
centroid = (float(xs.mean()), float(ys.mean()))
detections.append(
{
"label": label,
"mask": binary_mask,
"score": float(score) if score is not None else None,
"centroid": centroid,
"area": area,
}
)
return detections
def _update_tracks(
tracks: List[Track],
detections: Sequence[Dict],
frame_idx: int,
max_distance: float,
) -> None:
for detection in detections:
centroid = np.array(detection["centroid"])
best_track = None
best_distance = math.inf
for track in tracks:
if track.label != detection["label"]:
continue
if frame_idx - track.last_frame > MAX_TRACK_GAP:
continue
prev_point = np.array(track.points[-1][1:])
dist = np.linalg.norm(centroid - prev_point)
if dist < best_distance and dist <= max_distance:
best_distance = dist
best_track = track
if best_track:
best_track.points.append((frame_idx, *detection["centroid"]))
best_track.last_frame = frame_idx
best_track.score = detection["score"]
else:
new_track = Track(
track_id=len(tracks) + 1,
label=detection["label"],
points=[(frame_idx, *detection["centroid"])],
last_frame=frame_idx,
score=detection["score"],
)
tracks.append(new_track)
def _blend_mask(frame: np.ndarray, mask: np.ndarray, color: Tuple[int, int, int], alpha: float = 0.45):
overlay = frame.copy()
overlay[mask] = (1 - alpha) * overlay[mask] + alpha * np.array(color, dtype=np.float32)
return overlay
def _draw_annotations(
frame_rgb: np.ndarray,
detections: Sequence[Dict],
tracks: Sequence[Track],
frame_idx: int,
):
annotated = frame_rgb.astype(np.float32)
for det in detections:
color_rgb = CLASS_COLORS.get(det["label"], (255, 255, 255))
color_bgr = tuple(int(c) for c in reversed(color_rgb))
annotated = _blend_mask(annotated, det["mask"], color_rgb)
cx, cy = det["centroid"]
cv2.circle(annotated, (int(cx), int(cy)), 4, color_bgr, -1)
cv2.putText(
annotated,
det["label"],
(int(cx) + 4, int(cy) - 4),
cv2.FONT_HERSHEY_SIMPLEX,
0.4,
color_bgr,
1,
cv2.LINE_AA,
)
for track in tracks:
if len(track.points) < 2:
continue
if track.points[-1][0] < frame_idx - MAX_TRACK_GAP:
continue
color_rgb = CLASS_COLORS.get(track.label, (255, 255, 255))
color_bgr = tuple(int(c) for c in reversed(color_rgb))
pts = [
(int(x), int(y))
for (f_idx, x, y) in track.points
if f_idx <= frame_idx
]
for i in range(1, len(pts)):
cv2.line(annotated, pts[i - 1], pts[i], color_bgr, 2, cv2.LINE_AA)
cv2.circle(annotated, pts[-1], 5, color_bgr, -1)
return np.clip(annotated, 0, 255).astype(np.uint8)
def _summarize_tracks(tracks: Sequence[Track]) -> List[Dict]:
summary = []
for track in tracks:
if len(track.points) < 2:
continue
distances = []
for (prev_frame, x1, y1), (curr_frame, x2, y2) in zip(track.points, track.points[1:]):
distances.append(math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
summary.append(
{
"track_id": track.track_id,
"label": track.label,
"frames": len(track.points),
"start_frame": track.points[0][0],
"end_frame": track.points[-1][0],
"path_px": round(float(sum(distances)), 2),
}
)
return summary
# -----------------------------------------------------------------------------
# Video processing
# -----------------------------------------------------------------------------
def analyze_video(
video_path: str,
frame_stride: int = DEFAULT_FRAME_STRIDE,
max_frames: int = MAX_PROCESSED_FRAMES,
resize_long_edge: int = 1280,
) -> Tuple[str, List[Dict]]:
if not video_path:
raise gr.Error("Please upload an aerial video (MP4, MOV, ...).")
capture = cv2.VideoCapture(video_path)
if not capture.isOpened():
raise gr.Error("Unable to read the uploaded video.")
fps = capture.get(cv2.CAP_PROP_FPS) or 15
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
diag = math.sqrt(width**2 + height**2)
max_assign_distance = 0.04 * diag
processed_frames = []
tracks: List[Track] = []
frame_index = 0
processed_count = 0
while processed_count < max_frames:
ret, frame_bgr = capture.read()
if not ret:
break
if frame_index % frame_stride != 0:
frame_index += 1
continue
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
frame_rgb = _resize_long_edge(frame_rgb, resize_long_edge)
detections = _extract_detections(frame_rgb)
_update_tracks(tracks, detections, frame_index, max_assign_distance)
annotated = _draw_annotations(frame_rgb, detections, tracks, frame_index)
processed_frames.append(cv2.cvtColor(annotated, cv2.COLOR_RGB2BGR))
processed_count += 1
frame_index += 1
capture.release()
if not processed_frames:
raise gr.Error("No frames were processed. Try lowering the stride or uploading a different video.")
output_path = _write_video(processed_frames, fps / max(frame_stride, 1))
summary = _summarize_tracks(tracks)
return output_path, summary
def _resize_long_edge(frame_rgb: np.ndarray, target_long_edge: int) -> np.ndarray:
h, w, _ = frame_rgb.shape
long_edge = max(h, w)
if long_edge <= target_long_edge:
return frame_rgb
scale = target_long_edge / long_edge
new_size = (int(w * scale), int(h * scale))
resized = cv2.resize(frame_rgb, new_size, interpolation=cv2.INTER_AREA)
return resized
def _write_video(frames: Sequence[np.ndarray], fps: float) -> str:
height, width, _ = frames[0].shape
tmp_path = os.path.join(tempfile.gettempdir(), f"sam3-trajectories-{uuid.uuid4().hex}.mp4")
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
writer = cv2.VideoWriter(tmp_path, fourcc, max(fps, 1.0), (width, height))
for frame in frames:
writer.write(frame)
writer.release()
return tmp_path
# -----------------------------------------------------------------------------
# Gradio UI
# -----------------------------------------------------------------------------
with gr.Blocks(title="SAM3 Vehicle Trajectories") as demo:
gr.Markdown(
"""
### SAM3 for Vehicle Trajectories
1. Upload an aerial surveillance video.
2. The app prompts SAM3 with `small-vehicle` and `large-vehicle`.
3. Segmentations are linked across frames to render motion trails.
"""
)
with gr.Row():
video_input = gr.Video(label="Aerial video (MP4/MOV)")
controls = gr.Column()
with controls:
stride_slider = gr.Slider(
label="Frame stride",
minimum=1,
maximum=12,
value=DEFAULT_FRAME_STRIDE,
step=1,
info="Process one frame every N frames",
)
max_frames_slider = gr.Slider(
label="Max frames to process",
minimum=30,
maximum=1000,
value=MAX_PROCESSED_FRAMES,
step=10,
)
resize_slider = gr.Slider(
label="Resize longest edge (px)",
minimum=640,
maximum=1920,
value=1280,
step=40,
)
output_video = gr.Video(label="Overlay with trajectories")
track_table = gr.Dataframe(
headers=["track_id", "label", "frames", "start_frame", "end_frame", "path_px"],
datatype=["number", "str", "number", "number", "number", "number"],
wrap=True,
label="Track summary",
)
run_button = gr.Button("Extract trajectories", variant="primary")
run_button.click(
fn=analyze_video,
inputs=[video_input, stride_slider, max_frames_slider, resize_slider],
outputs=[output_video, track_table],
api_name="analyze",
)
if __name__ == "__main__":
demo.launch()