Dataset Viewer
Auto-converted to Parquet Duplicate
id
int64
0
85.1k
source_lang
stringclasses
15 values
target_lang
stringclasses
1 value
source_sentence
stringlengths
1
1.21k
target_sentence
stringlengths
1
590
lang_code
stringclasses
15 values
dialect
stringclasses
32 values
source
stringclasses
284 values
split
stringclasses
3 values
0
ami
en
sa'osi
true
ami
UNKNOWN
FormosanBank/Corpora/Virginia_Fey_Dictionary/XML/Amis/Amis.xml
train
1
ami
en
honihoni
frequently
ami
UNKNOWN
FormosanBank/Corpora/Virginia_Fey_Dictionary/XML/Amis/Amis.xml
train
2
ami
en
Layapen.
Take.
ami
UNKNOWN
FormosanBank/Corpora/Virginia_Fey_Dictionary/XML/Amis/Amis.xml
train
3
ami
en
Ota'en!
Vomit.
ami
UNKNOWN
FormosanBank/Corpora/Virginia_Fey_Dictionary/XML/Amis/Amis.xml
train
4
ami
en
sapisasing
camera
ami
UNKNOWN
FormosanBank/Corpora/Virginia_Fey_Dictionary/XML/Amis/Amis.xml
train
5
ami
en
SIRO
Silo
ami
UNKNOWN
FormosanBank/Corpora/MontgomeryTexts/XML/Amis/Silo.xml
train
6
ami
en
Hayi!
Yes.
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_情境族語/Amis/Southern_Amis.xml
train
7
ami
en
Irato.
Yes.
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_情境族語/Amis/Southern_Amis.xml
train
8
ami
en
Hai.
Yes.
ami
Malan
FormosanBank/Corpora/ePark/XML/ep2_情境族語/Amis/Malan_Amis.xml
train
9
ami
en
Iraay.
Yes.
ami
Malan
FormosanBank/Corpora/ePark/XML/ep2_情境族語/Amis/Malan_Amis.xml
train
10
ami
en
iraay.
Yes.
ami
Hengchun
FormosanBank/Corpora/ePark/XML/ep2_情境族語/Amis/Hengchun_Amis.xml
train
11
ami
en
Hay.
Yes.
ami
Xiuguluan
FormosanBank/Corpora/ePark/XML/ep2_情境族語/Amis/Xiuguluan_Amis.xml
train
12
ami
en
hayi.
Yes.
ami
Coastal
FormosanBank/Corpora/ePark/XML/ep2_情境族語/Amis/Coastal_Amis.xml
train
13
ami
en
cacay
one
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
14
ami
en
tosa
two
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
15
ami
en
tolo
three
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
16
ami
en
sepat
four
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
17
ami
en
lima
five
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
18
ami
en
enem
six
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
19
ami
en
pito
seven
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
20
ami
en
walo
eight
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
21
ami
en
siwa
nine
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
22
ami
en
moketep
ten
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
23
ami
en
patekenan
hundred
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
24
ami
en
hatini
some
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
25
ami
en
kinacacay
once
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
26
ami
en
volilan
bunch
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
27
ami
en
kalomaanay
kind
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
28
ami
en
maramod
pair
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
29
ami
en
amin
entire
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
30
ami
en
latosa
half
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
31
ami
en
kiso
you
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
32
ami
en
kako
I
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
33
ami
en
cira
he
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
34
ami
en
kami
us
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
35
ami
en
heni
they
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
36
ami
en
kita
we
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
37
ami
en
kami
let's
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
38
ami
en
iraan
that
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
39
ami
en
itini
here
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
40
ami
en
itila
there
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
41
ami
en
mahaen
this
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
42
ami
en
maan
what
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
43
ami
en
mamaan
how
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
44
ami
en
cima
who
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
45
ami
en
icowa
where
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
46
ami
en
mamaan
what
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
47
ami
en
kiya
why
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
48
ami
en
ama
dad
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
49
ami
en
ina
mom
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
50
ami
en
laloma'an
relative
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
51
ami
en
ramod
spouse
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
52
ami
en
ali
sister-in-law
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
53
ami
en
kadavo
daughter-in-law
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
54
ami
en
vaki/vayi
grandchild
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
55
ami
en
vavainay
husband
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
56
ami
en
cingkie
in-law
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
57
ami
en
malekaka
sibling
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
58
ami
en
vaki
uncle
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
59
ami
en
vayi
aunt
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
60
ami
en
ngangan
name
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
61
ami
en
cavay
friend
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
62
ami
en
wawa
child
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
63
ami
en
vavahi
female
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
64
ami
en
vavainay
male
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
65
ami
en
tamdaw
people
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
66
ami
en
ising
doctor
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
67
ami
en
pasevana'ay
teacher
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
68
ami
en
ada
enemy
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
69
ami
en
sakakaay
sir
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
70
ami
en
lomowa
hooliganism
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
71
ami
en
kincal
police
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
72
ami
en
syawcang
principal
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
73
ami
en
sengho
father
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
74
ami
en
siwni
sister
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
75
ami
en
Holam
mainlander
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
76
ami
en
kaying
miss
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
77
ami
en
micodaday
student
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
78
ami
en
tangila
ear
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
79
ami
en
cepi'
thigh
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
80
ami
en
mata
eye
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
81
ami
en
pising
face
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
82
ami
en
ngoyos
mouth
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
83
ami
en
tangal
head
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
84
ami
en
kanos
fingernail
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
85
ami
en
kamay
hand
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
86
ami
en
tireng
body
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
87
ami
en
ngangosoan
nose
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
88
ami
en
koko'
foot
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
89
ami
en
wadis
teeth
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
90
ami
en
vokes
hair
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
91
ami
en
remes
blood
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
92
ami
en
titi
meat
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
93
ami
en
laway
forehead
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
94
ami
en
tiyad
belly
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
95
ami
en
coco
breast
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
96
ami
en
avala
shoulder
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
97
ami
en
ngaroy
chin
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
98
ami
en
kolol
back
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
99
ami
en
vanges
skin
ami
Southern
FormosanBank/Corpora/ePark/XML/ep2_學習詞表/Amis/Southern_Amis.xml
train
End of preview. Expand in Data Studio

FormosanBank Machine Translation

Parallel corpora for 15 Indigenous Formosan languages aligned to English and Mandarin Chinese, prepared for use with the Hugging Face datasets library.

The dataset aggregates processed sentence- and phrase-level corpora into two CSV files:

  • Formosan → English (formosan_en_hf.csv)
  • Formosan → Chinese (formosan_zh_hf.csv)

Each row is a single bilingual sentence pair with language, dialect, split, and provenance metadata. The dataset is designed for training and evaluating neural machine translation (NMT) and related models for low-resource Formosan languages.

IMPORTANT DISCLAIMER: Our Machine Translation models published on HuggingFace and in our papers were trained on this data in addition to private data not available to the public due to content restrictions.


Dataset Summary

  • Total sentence pairs: 393,634
    • Formosan → English: 85,144
    • Formosan → Chinese: 308,490
  • Languages (15): Amis, Bunun, Kavalan, Rukai, Paiwan, Puyuma, Thao, Saaroa, Sakizaya, Yami/Tao, Atayal, Seediq/Truku, Tsou, Kanakanavu, Saisiyat
  • Targets: English (en), Mandarin Chinese (zh)
  • Splits (all languages, both targets combined):
    • Train: 334,772
    • Validate: 29,412
    • Test: 29,450
  • License: CC BY 4.0
  • Format: UTF-8 CSV, one sentence pair per row

The dataset is intended to support research on low-resource MT, cross-lingual transfer, and documentation of endangered Formosan languages.


Supported Tasks and Use Cases

Primary task

  • translation
    • Formosan language → English
    • Formosan language → Chinese

Example use cases

  • Training NMT systems (e.g. NLLB / encoder–decoder models) for individual Formosan languages.
  • Cross-lingual pretraining and evaluation for multilingual models.
  • Dialect-aware MT experiments using the dialect field.
  • Lexicon / dictionary-style MT from short phrases and headwords.

Languages and Coverage

High-level sentence counts per language (summing both directions: Formosan→English and Formosan→Chinese):

Language Formosan→English Formosan→Chinese Total
Amis 10,523 30,646 41,169
Bunun 9,006 30,878 39,884
Kavalan 2,098 14,682 16,780
Rukai 11,850 39,360 51,210
Paiwan 9,806 24,015 33,821
Puyuma 7,199 26,154 33,353
Thao 2,086 11,633 13,719
Saaroa 2,130 9,819 11,949
Sakizaya 2,132 11,318 13,450
Yami/Tao 3,009 12,792 15,801
Atayal 11,724 35,471 47,195
Seediq/Truku 7,244 29,840 37,084
Tsou 2,117 8,861 10,978
Kanakanavu 2,105 11,904 14,009
Saisiyat 2,115 11,117 13,232
TOTAL 85,144 308,490 393,634

Many languages also include dialect labels, for example:

  • Amis: UNKNOWN, Southern, Malan, Coastal, Xiuguluan, Hengchun
  • Bunun: UNKNOWN, Junqun, Luanqun, Kaqun, Tanqun, Zhuoqun
  • Paiwan, Puyuma, Rukai, Atayal, Seediq/Truku: multiple dialects
  • Others (e.g. Kavalan, Thao, Saaroa, Tsou, Kanakanavu, Saisiyat, Sakizaya, Yami/Tao) currently use UNKNOWN dialect

Dialect coverage makes it possible to do dialect-specific MT or robustness studies.


Dataset Structure

Data Files

  • formosan_en_hf.csv – all Formosan→English pairs
  • formosan_zh_hf.csv – all Formosan→Chinese pairs

Each file contains all languages and splits. The language direction and split are specified per row.

Data Fields

All CSVs share the same schema:

id,source_lang,target_lang,source_sentence,target_sentence,lang_code,dialect,source,split
  • id (int) – unique row identifier within each file.
  • source_lang (str) – language code of the Formosan language (e.g. "ami", "bnn").
  • target_lang (str) – target language code ("en" or "zh").
  • source_sentence (str) – sentence or phrase in the Formosan language.
  • target_sentence (str) – translation into the target language.
  • lang_code (str) – canonical code for the Formosan language (usually same as source_lang).
  • dialect (str) – dialect label (e.g. "Southern", "Malan", "UNKNOWN").
  • source (str) – provenance string or original file path in the upstream corpora.
  • split (str) – one of "train", "validate", "test".

Splits

Splits are defined per row via the split column:

  • train – training data
  • validate – development / validate data
  • test – held-out test data

Global totals across all languages and directions:

  • Train: 334,772
  • Validate: 29,412
  • Test: 29,450

Users can filter to any language pair and then re-group into a DatasetDict by split.


How to Load the Dataset

1. Install dependencies

pip install datasets
# optional, if you plan to fine-tune models:
pip install transformers

2. Load the EN and ZH files from the Hub

Assume the dataset identifier is:

FormosanBankDemos/formosan-mt

Load both CSVs:

from datasets import load_dataset

HF_ID = "FormosanBankDemos/formosan-mt"

# Formosan → English
ds_en_all = load_dataset(
    HF_ID,
    data_files="formosan_en_hf.csv",
)["train"]  # entire CSV exposed as a 'train' split by default

# Formosan → Chinese
ds_zh_all = load_dataset(
    HF_ID,
    data_files="formosan_zh_hf.csv",
)["train"]

Alternatively, if you rely on the YAML configs defined above:

# Uses config_name: "formosan-en" from the README metadata
ds_en_all = load_dataset(
    HF_ID,
    name="formosan-en",
    split="train",
)

3. Filter to a specific language pair (example: Amis → English, ami → en)

ami_en = ds_en_all.filter(
    lambda ex: ex["source_lang"] == "ami" and ex["target_lang"] == "en"
)

print(ami_en)
# Dataset({
#   features: ['id', 'source_lang', 'target_lang', 'source_sentence', ...],
#   num_rows: ...
# })

4. Get train / validation / test splits

from datasets import DatasetDict

def split_by_column(ds):
    return DatasetDict({
        "train":      ds.filter(lambda ex: ex["split"] == "train"),
        "validate": ds.filter(lambda ex: ex["split"] == "validate"),
        "test":       ds.filter(lambda ex: ex["split"] == "test"),
    })

ami_en_splits = split_by_column(ami_en)

print(ami_en_splits)
# DatasetDict({
#   train: Dataset({ ... })
#   validate: Dataset({ ... })
#   test: Dataset({ ... })
# })

5. (Optional) Add a translation column

Many translation training scripts expect a translation field like {"ami": "...", "en": "..."}. You can construct it from existing columns:

def add_translation(batch):
    translations = []
    for src, tgt, sl, tl in zip(
        batch["source_sentence"],
        batch["target_sentence"],
        batch["source_lang"],
        batch["target_lang"],
    ):
        translations.append({sl: src, tl: tgt})
    return {"translation": translations}

ami_en_splits = ami_en_splits.map(add_translation, batched=True)

print(ami_en_splits["train"][0]["translation"])
# {'ami': "sa'osi", 'en': 'true'}

You can reuse the same pattern for any other language pair:

# Example: Paiwan → English
pwn_en = ds_en_all.filter(
    lambda ex: ex["source_lang"] == "pwn" and ex["target_lang"] == "en"
)
pwn_en_splits = split_by_column(pwn_en)

Intended Uses, Limitations, and Risks

Intended Uses

  • Research on low-resource machine translation for Formosan languages.
  • Studies of dialect variation in MT via the dialect field.
  • Baseline and benchmark datasets for multilingual models focusing on Austronesian languages.

Limitations

  • Domain coverage is heterogeneous (dictionary-style entries, short phrases, and some longer sentences); performance may not generalize to all real-world text genres.
  • Dialect labels are not always available; some corpora use UNKNOWN for dialect.
  • The dataset currently encodes translations only into English and Chinese, not between Formosan languages.

Risks and Biases

  • Source corpora may contain historical, religious, or culturally specific content that is not representative of contemporary language use.
  • Translations may include inconsistencies or legacy orthography; users should verify quality before high-stakes use.
  • As with any MT dataset for endangered languages, there is a risk of misinterpretation or over-reliance on automatically produced translations in sensitive cultural contexts.

Users should avoid deploying models trained on this dataset in critical or high-stakes settings without human expert review.


Citation

If you use this dataset in academic work, please cite the FormosanBank project and this dataset page. A generic citation format is:

FormosanBank annotations and metadata are CC-BY-4.0. This means you must cite the source in any redistributed or derived products. For code packages, you may refer to the GitHub repository. For academic publications, you should cite Mohamed, W., Le Ferrand, É., Sung, L.-M., Prud'hommeaux, E., & Hartshorne, J. K. (2024). FormosanBank. Electronic Resource.

FormosanBankDemos. FormosanBank Machine Translation Dataset. Hugging Face Datasets. Available at: https://huggingface.co/datasets/FormosanBankDemos/formosan-mt

Downloads last month
25