developer-lunark's picture
Upload README.md with huggingface_hub
9e7a09d verified
metadata
license: apache-2.0
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
tags:
  - korean
  - roleplay
  - character-ai
  - finetuned
  - lora
  - qwen3
  - moe
language:
  - ko
  - en
pipeline_tag: text-generation
library_name: transformers

Qwen3-30B-A3B-Kaidol-v4

Korean character roleplay model fine-tuned from Qwen3-30B-A3B-Instruct-2507.

Model Description

This model is optimized for Korean character roleplay conversations, trained with custom character datasets featuring distinct personalities, speech patterns, and emotional expressions.

Training Details

Parameter Value
Base Model Qwen/Qwen3-30B-A3B-Instruct-2507
Method LoRA (merged)
LoRA Rank 32
LoRA Alpha 64
Target Modules q_proj, k_proj, v_proj, o_proj
Training Epochs 3
Learning Rate 2e-5
Max Sequence Length 2048

Target Modules

  • Attention only: q_proj, k_proj, v_proj, o_proj

Intended Use

This model is designed for:

  • Korean character roleplay conversations
  • Interactive storytelling
  • Character-based chat applications

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "developer-lunark/Qwen3-30B-A3B-Kaidol-v4"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "์•ˆ๋…•ํ•˜์„ธ์š”!"}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

vLLM Serving

vllm serve developer-lunark/Qwen3-30B-A3B-Kaidol-v4 \
    --tensor-parallel-size 2 \
    --max-model-len 8192

Limitations

  • Optimized for Korean language; performance in other languages may vary
  • Character roleplay focused; may not be optimal for factual Q&A
  • Inherits limitations from the base Qwen3 model

License

Apache 2.0 (following the base model license)

Acknowledgments