File size: 37,683 Bytes
f6bb351
 
 
 
 
c1ca72e
f6bb351
 
ec83b0e
1d78d1d
 
f6bb351
 
1d78d1d
 
 
f6bb351
c1ca72e
 
 
ec83b0e
0eb142b
ec83b0e
1d78d1d
 
 
 
 
 
 
 
 
ec83b0e
 
0eb142b
ec83b0e
1d78d1d
ec83b0e
1d78d1d
0eb142b
ec83b0e
 
 
1d78d1d
 
 
0eb142b
ec83b0e
 
1d78d1d
 
ec83b0e
 
0eb142b
ec83b0e
0eb142b
 
1d78d1d
 
0eb142b
 
1d78d1d
ec83b0e
 
1d78d1d
 
0eb142b
ec83b0e
0eb142b
1d78d1d
 
0eb142b
ec83b0e
 
 
 
1d78d1d
 
 
 
 
 
ec83b0e
 
 
 
1d78d1d
ec83b0e
1d78d1d
 
ec83b0e
 
 
 
1d78d1d
ec83b0e
1d78d1d
 
ec83b0e
 
 
 
1d78d1d
 
 
ec83b0e
 
 
1d78d1d
 
ec83b0e
 
1d78d1d
ec83b0e
1d78d1d
 
 
 
 
 
 
ec83b0e
8b81b1e
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
8b81b1e
 
1d78d1d
 
 
 
8b81b1e
1d78d1d
 
 
 
8b81b1e
1d78d1d
 
 
 
 
 
 
 
8b81b1e
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b81b1e
 
1d78d1d
 
 
8b81b1e
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b81b1e
1d78d1d
8b81b1e
1d78d1d
8b81b1e
1d78d1d
 
8b81b1e
 
1d78d1d
 
 
 
 
 
 
 
 
8b81b1e
0eb142b
f6bb351
1d78d1d
 
 
 
 
 
 
 
5dc6eaf
 
 
1d78d1d
 
 
5dc6eaf
c1ca72e
5dc6eaf
1d78d1d
 
5dc6eaf
 
 
 
 
 
 
 
1d78d1d
5dc6eaf
1d78d1d
 
9e416cb
 
1d78d1d
9e416cb
1d78d1d
 
 
9e416cb
1d78d1d
 
 
9e416cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d78d1d
 
9e416cb
1d78d1d
 
 
9e416cb
 
 
 
 
 
 
 
 
1d78d1d
9e416cb
1d78d1d
 
9e416cb
1d78d1d
 
9e416cb
 
 
 
1d78d1d
 
 
 
 
9e416cb
 
 
 
 
 
 
 
1d78d1d
 
 
 
 
9e416cb
 
1d78d1d
 
 
 
9e416cb
 
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
 
1d78d1d
9e416cb
 
1d78d1d
9e416cb
 
 
 
 
 
 
1d78d1d
 
 
9e416cb
 
1d78d1d
9e416cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
 
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
1d78d1d
 
9e416cb
 
1d78d1d
9e416cb
 
 
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
1d78d1d
 
 
 
 
 
9e416cb
1d78d1d
 
 
 
 
 
 
 
 
 
 
9e416cb
 
 
 
 
 
 
 
 
 
 
 
1d78d1d
 
 
9e416cb
 
 
 
 
 
 
 
 
1d78d1d
 
 
 
9e416cb
 
 
1d78d1d
 
 
 
9e416cb
1d78d1d
 
 
 
 
 
 
 
 
 
 
9e416cb
 
 
1d78d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
1d78d1d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
import torch
import torch.nn.functional as F
import numpy as np
import os
import time
import gradio as gr
import cv2
from PIL import Image
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import plotly.express as px
from model.CyueNet_models import MMS
from utils1.data import transform_image
import tempfile
from pathlib import Path
import pandas as pd

# 设置GPU/CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 增强的自定义CSS
custom_css = """
    :root {
        --primary-color: #3498db;
        --secondary-color: #2ecc71;
        --accent-color: #e74c3c;
        --dark-color: #2c3e50;
        --light-color: #ecf0f1;
        --background-color: #f8f9fa;
        --text-color: #34495e;
        --border-radius: 12px;
        --box-shadow: 0 6px 16px rgba(0, 0, 0, 0.12);
    }

    .gradio-container {
        background: linear-gradient(135deg, var(--background-color), #ffffff);
        max-width: 1400px !important;
        margin: auto !important;
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }

    .output-image, .input-image {
        border-radius: var(--border-radius);
        box-shadow: var(--box-shadow);
        transition: all 0.3s ease;
        border: 1px solid rgba(0, 0, 0, 0.1);
    }

    .output-image:hover, .input-image:hover {
        transform: translateY(-5px);
        box-shadow: 0 12px 24px rgba(0, 0, 0, 0.15);
    }

    .custom-button {
        background: linear-gradient(45deg, var(--primary-color), var(--secondary-color));
        border: none;
        color: white;
        padding: 12px 24px;
        border-radius: 30px;
        cursor: pointer;
        transition: all 0.3s ease;
        font-weight: 600;
        text-transform: uppercase;
        letter-spacing: 1px;
        box-shadow: 0 4px 8px rgba(52, 152, 219, 0.3);
        margin: 5px;
    }

    .custom-button:hover {
        transform: translateY(-3px);
        box-shadow: 0 6px 12px rgba(52, 152, 219, 0.4);
    }

    .tabs {
        border-radius: var(--border-radius);
        overflow: hidden;
        box-shadow: var(--box-shadow);
        background: white;
    }

    .tab-item {
        padding: 20px;
    }

    .slider-component {
        background: white;
        padding: 20px;
        border-radius: var(--border-radius);
        box-shadow: var(--box-shadow);
        margin-bottom: 20px;
    }

    .info-box {
        background: white;
        padding: 20px;
        border-radius: var(--border-radius);
        margin: 15px 0;
        box-shadow: var(--box-shadow);
    }

    .statistics-container {
        display: flex;
        gap: 15px;
        margin-top: 15px;
        flex-wrap: wrap;
    }

    .statistic-card {
        background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
        padding: 20px;
        border-radius: var(--border-radius);
        flex: 1;
        min-width: 200px;
        text-align: center;
        box-shadow: var(--box-shadow);
        color: white;
        transition: all 0.3s ease;
    }

    .statistic-card:hover {
        transform: scale(1.03);
    }

    .statistic-card h4 {
        margin: 0 0 10px 0;
        font-size: 16px;
        font-weight: 500;
    }

    .statistic-card p {
        margin: 0;
        font-size: 24px;
        font-weight: 700;
    }

    .card {
        background: white;
        border-radius: var(--border-radius);
        box-shadow: var(--box-shadow);
        padding: 20px;
        margin-bottom: 20px;
        transition: all 0.3s ease;
    }

    .card:hover {
        transform: translateY(-5px);
        box-shadow: 0 12px 24px rgba(0, 0, 0, 0.15);
    }

    .card-title {
        font-size: 18px;
        font-weight: 600;
        margin-bottom: 15px;
        color: var(--dark-color);
        display: flex;
        align-items: center;
    }

    .card-title i {
        margin-right: 10px;
        font-size: 20px;
    }

    .header {
        background: linear-gradient(135deg, var(--dark-color), var(--primary-color));
        color: white;
        padding: 30px;
        border-radius: var(--border-radius) var(--border-radius) 0 0;
        text-align: center;
        margin-bottom: 30px;
    }

    .header h1 {
        margin: 0;
        font-size: 36px;
        font-weight: 700;
        display: flex;
        align-items: center;
        justify-content: center;
    }

    .header h1 i {
        margin-right: 15px;
    }

    .header p {
        margin: 10px 0 0 0;
        font-size: 18px;
        opacity: 0.9;
    }

    .feature-grid {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
        gap: 20px;
        margin-bottom: 30px;
    }

    .feature-card {
        background: white;
        border-radius: var(--border-radius);
        padding: 25px;
        box-shadow: var(--box-shadow);
        transition: all 0.3s ease;
    }

    .feature-card:hover {
        transform: translateY(-5px);
        box-shadow: 0 12px 24px rgba(0, 0, 0, 0.15);
    }

    .feature-card h3 {
        color: var(--primary-color);
        display: flex;
        align-items: center;
    }

    .feature-card h3 i {
        margin-right: 10px;
        font-size: 24px;
    }

    .performance-bar {
        height: 8px;
        background: #e0e0e0;
        border-radius: 4px;
        margin: 15px 0;
        overflow: hidden;
    }

    .performance-fill {
        height: 100%;
        background: linear-gradient(90deg, var(--secondary-color), var(--primary-color));
        border-radius: 4px;
        transition: width 0.5s ease;
    }

    .tooltip {
        position: relative;
        display: inline-block;
        cursor: pointer;
    }

    .tooltip .tooltiptext {
        visibility: hidden;
        width: 200px;
        background-color: var(--dark-color);
        color: #fff;
        text-align: center;
        border-radius: 6px;
        padding: 10px;
        position: absolute;
        z-index: 1;
        bottom: 125%;
        left: 50%;
        transform: translateX(-50%);
        opacity: 0;
        transition: opacity 0.3s;
        font-size: 14px;
    }

    .tooltip:hover .tooltiptext {
        visibility: visible;
        opacity: 1;
    }

    .model-performance {
        display: flex;
        justify-content: space-between;
        align-items: center;
        margin-top: 20px;
    }

    .model-metric {
        text-align: center;
        padding: 15px;
        background: rgba(236, 240, 241, 0.5);
        border-radius: var(--border-radius);
        flex: 1;
        margin: 0 5px;
    }

    .model-metric h4 {
        margin: 0 0 5px 0;
        color: var(--dark-color);
        font-weight: 500;
    }

    .model-metric p {
        margin: 0;
        font-size: 24px;
        font-weight: 700;
        color: var(--primary-color);
    }

    .visualization-container {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
        gap: 20px;
        margin-top: 20px;
    }

    .visualization-card {
        background: white;
        border-radius: var(--border-radius);
        padding: 20px;
        box-shadow: var(--box-shadow);
    }

    .btn-group {
        display: flex;
        flex-wrap: wrap;
        margin: 15px 0;
        gap: 10px;
    }
"""

# 创建自定义热力图颜色映射
def create_custom_colormap():
    colors = ["#2c3e50", "#3498db", "#1abc9c", "#f1c40f", "#e74c3c"]
    cmap = LinearSegmentedColormap.from_list("custom_heatmap", colors)
    return cmap

custom_cmap = create_custom_colormap()

class ImageProcessor:
    def __init__(self):
        self.model = None
        self.model_load_time = 0
        self.total_inference_time = 0
        self.processed_count = 0
        self.load_model()

    def load_model(self):
        """加载预训练的模型并记录加载时间"""
        start_time = time.time()
        self.model = MMS()
        try:
            self.model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
            print("模型加载成功")
        except RuntimeError as e:
            print(f"加载状态字典时出现部分不匹配,错误信息: {e}")
        self.model.to(device)
        self.model.eval()
        self.model_load_time = time.time() - start_time

    def process_image(self, image, threshold=0.5, testsize=256, enhance_contrast=False, denoise=False, 
                     show_heatmap=True, show_segmentation=True, show_confidence=True):
        """增强的图像处理函数"""
        if image is None:
            return None, None, None, None, None, "请提供有效的图像", {}, None, None, None
        
        # 记录处理开始时间
        self.processed_count += 1
        time_start = time.time()
        
        # 图像预处理选项
        if denoise:
            image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
        
        if enhance_contrast:
            lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
            l, a, b = cv2.split(lab)
            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
            l = clahe.apply(l)
            lab = cv2.merge((l,a,b))
            image = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)

        # 保存原始图像
        original_image = image.copy()
        
        # 预处理图像
        image_pil = Image.fromarray(image).convert('RGB')
        image_tensor = transform_image(image_pil, testsize)
        image_tensor = image_tensor.unsqueeze(0)
        image_tensor = image_tensor.to(device)
        
        # 推理
        with torch.no_grad():
            outputs = self.model(image_tensor)
            x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = outputs
        
        # 记录推理时间
        inference_time = time.time() - time_start
        self.total_inference_time += inference_time
        
        # 处理输出结果
        res = res.sigmoid().data.cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
        
        # 调整大小
        h, w = original_image.shape[:2]
        res_resized = cv2.resize(res, (w, h))
        
        # 应用阈值
        res_vis = (res_resized * 255).astype(np.uint8)
        
        # 创建热力图
        heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
        
        # 二值化处理
        _, binary_mask = cv2.threshold(res_vis, int(255 * threshold), 255, cv2.THRESH_BINARY)
        
        # 叠加结果
        alpha = 0.5
        if len(original_image.shape) == 3 and original_image.shape[2] == 3:
            original_bgr = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
        else:
            original_bgr = cv2.cvtColor(original_image, cv2.COLOR_GRAY2BGR)
        
        overlayed = cv2.addWeighted(original_bgr, 1-alpha, heatmap, alpha, 0)
        segmented = cv2.bitwise_and(original_bgr, original_bgr, mask=binary_mask)
        
        # 转回RGB格式
        overlayed_rgb = cv2.cvtColor(overlayed, cv2.COLOR_BGR2RGB)
        segmented_rgb = cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB)
        
        # 计算统计信息
        contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        num_objects = len(contours)
        mean_confidence = np.mean(res_resized)
        max_confidence = np.max(res_resized)
        
        stats = {
            "处理分辨率": f"{w}x{h}",
            "检测目标数量": str(num_objects),
            "平均置信度": f"{mean_confidence:.2%}",
            "最大置信度": f"{max_confidence:.2%}",
            "推理时间": f"{inference_time:.4f}秒"
        }
        
        # 创建置信度直方图
        plt.figure(figsize=(8, 4))
        plt.hist(res_resized.flatten(), bins=50, color='#3498db', alpha=0.7)
        plt.title('置信度分布')
        plt.xlabel('置信度')
        plt.ylabel('像素数量')
        plt.grid(True, linestyle='--', alpha=0.7)
        plt.tight_layout()
        
        # 保存到临时文件
        temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
        plt.savefig(temp_file.name, dpi=100)
        plt.close()
        confidence_plot = temp_file.name
        
        # 创建3D热力图可视化
        sample_step = max(1, w // 50, h // 50)  # 采样步长
        y, x = np.mgrid[0:h:sample_step, 0:w:sample_step]
        z = res_resized[::sample_step, ::sample_step]
        
        fig = px.scatter_3d(
            x=x.flatten(),
            y=y.flatten(),
            z=z.flatten(),
            color=z.flatten(),
            color_continuous_scale='jet',
            title='3D置信度热力图'
        )
        
        fig.update_layout(
            scene=dict(
                xaxis_title='宽度',
                yaxis_title='高度',
                zaxis_title='置信度'
            ),
            height=400,
            margin=dict(l=20, r=20, b=20, t=40)
        )
        
        # 保存到临时文件
        temp_file_3d = tempfile.NamedTemporaryFile(suffix=".html", delete=False)
        fig.write_html(temp_file_3d.name)
        heatmap_3d = temp_file_3d.name
        
        # 创建模型注意力可视化
        attention_map = sk1_sig.squeeze().cpu().numpy()
        attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min() + 1e-8)
        attention_map_resized = cv2.resize(attention_map, (w, h))
        
        plt.figure(figsize=(8, 4))
        plt.imshow(attention_map_resized, cmap='viridis')
        plt.title('模型注意力图')
        plt.colorbar()
        plt.tight_layout()
        
        temp_file_attn = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
        plt.savefig(temp_file_attn.name, dpi=100)
        plt.close()
        attention_plot = temp_file_attn.name
        
        return original_image, res_vis, heatmap, overlayed_rgb, segmented_rgb, f"推理时间: {inference_time:.4f}秒", stats, confidence_plot, heatmap_3d, attention_plot

# 创建处理器实例
processor = ImageProcessor()

def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours, show_heatmap, show_segmentation, show_confidence):
    """增强的主处理函数"""
    if input_image is None:
        return [None] * 10 + ["请上传图片"]
    
    # 处理图像
    results = processor.process_image(
        input_image, 
        threshold=threshold/100.0,
        enhance_contrast=enhance_contrast,
        denoise=denoise,
        show_heatmap=show_heatmap,
        show_segmentation=show_segmentation,
        show_confidence=show_confidence
    )
    
    original, saliency_map, heatmap, overlayed, segmented, time_info, stats, confidence_plot, heatmap_3d, attention_plot = results
    
    # 添加轮廓显示
    if show_contours and saliency_map is not None:
        _, binary = cv2.threshold(saliency_map, 127, 255, cv2.THRESH_BINARY)
        contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        overlay_with_contours = overlayed.copy()
        cv2.drawContours(overlay_with_contours, contours, -1, (0,255,0), 2)
        overlayed = overlay_with_contours
    
    # 生成统计信息HTML
    stats_html = "<div class='statistics-container'>"
    for key, value in stats.items():
        stats_html += f"<div class='statistic-card'><h4>{key}</h4><p>{value}</p></div>"
    stats_html += "</div>"
    
    # 生成模型性能信息
    avg_inference_time = processor.total_inference_time / processor.processed_count if processor.processed_count > 0 else 0
    model_stats = {
        "模型加载时间": f"{processor.model_load_time:.2f}秒",
        "平均推理时间": f"{avg_inference_time:.4f}秒",
        "处理图像数量": f"{processor.processed_count}张",
        "设备类型": "GPU" if torch.cuda.is_available() else "CPU"
    }
    
    model_html = "<div class='statistics-container'>"
    for key, value in model_stats.items():
        model_html += f"<div class='statistic-card'><h4>{key}</h4><p>{value}</p></div>"
    model_html += "</div>"
    
    return original, saliency_map, heatmap, overlayed, segmented, time_info, stats_html, confidence_plot, heatmap_3d, attention_plot, model_html

def process_example(example_index):
    """处理示例图像"""
    examples = [
        "example_images/1.jpg",
        "example_images/2.jpg",
        "example_images/3.jpg",
        "example_images/4.jpg"
    ]
    
    if example_index < 0 or example_index >= len(examples):
        return [None] * 11
    
    image_path = examples[example_index]
    if not os.path.exists(image_path):
        return [None] * 11 + [f"示例图像不存在: {image_path}"]
    
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
    results = run_demo(image, 50, False, False, True, True, True, True)
    return results

def process_webcam(image):
    """处理网络摄像头图像"""
    if image is None:
        return [None] * 11
    
    results = run_demo(image, 50, True, True, True, True, True, True)
    return results

def process_folder(folder_path):
    """处理文件夹中的图像"""
    if folder_path is None:
        return "请选择文件夹", None
    
    if not os.path.exists(folder_path):
        return f"文件夹不存在: {folder_path}", None
    
    image_extensions = ['.jpg', '.jpeg', '.png', '.bmp']
    image_files = [f for f in os.listdir(folder_path) 
                  if os.path.isfile(os.path.join(folder_path, f)) 
                  and os.path.splitext(f)[1].lower() in image_extensions]
    
    if not image_files:
        return "文件夹中没有找到图像文件", None
    
    # 创建结果目录
    results_dir = os.path.join(folder_path, "detection_results")
    os.makedirs(results_dir, exist_ok=True)
    
    # 处理图像
    processed_count = 0
    for img_file in image_files:
        img_path = os.path.join(folder_path, img_file)
        image = cv2.imread(img_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        
        # 处理图像
        _, _, _, _, segmented, _, _, _, _, _ = processor.process_image(
            image, threshold=0.5, testsize=256, 
            enhance_contrast=False, denoise=False
        )
        
        # 保存结果
        result_path = os.path.join(results_dir, f"result_{img_file}")
        cv2.imwrite(result_path, cv2.cvtColor(segmented, cv2.COLOR_RGB2BGR))
        processed_count += 1
    
    return f"处理完成: {processed_count}张图像已保存到 {results_dir}", results_dir

# 创建Gradio界面
with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as demo:
    with gr.Column():
        # 头部区域
        with gr.Row(elem_classes="header"):
            gr.Markdown(
                """
                <div style="text-align: center;">
                    <h1><i class="fas fa-eye"></i> 智能显著性目标检测系统</h1>
                    <p>基于深度学习的图像显著性检测与分析平台</p>
                </div>
                """
            )
        
        # 功能卡片
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Tabs() as tabs:
                    with gr.TabItem("🖼️ 图像处理", elem_classes="tab-item"):
                        with gr.Row():
                            with gr.Column(scale=1):
                                # 输入区域
                                with gr.Card(elem_classes="card"):
                                    gr.Markdown("### 📤 输入图像")
                                    input_image = gr.Image(
                                        label="上传或拍摄图像",
                                        type="numpy",
                                        elem_classes="input-image",
                                        interactive=True
                                    )
                                    
                                    # 示例图像按钮
                                    gr.Markdown("### 🧪 示例图像")
                                    example_btns = gr.Row()
                                    with example_btns:
                                        for i in range(4):
                                            gr.Button(f"示例 {i+1}", elem_classes="custom-button").click(
                                                fn=lambda idx=i: process_example(idx),
                                                outputs=[
                                                    input_image, 
                                                    gr.components.Image(label="显著性图", visible=False),
                                                    gr.components.Image(label="热力图", visible=False),
                                                    gr.components.Image(label="叠加效果", visible=False),
                                                    gr.components.Image(label="目标分割", visible=False),
                                                    gr.components.Textbox(visible=False),
                                                    gr.components.HTML(visible=False),
                                                    gr.components.Image(visible=False),
                                                    gr.components.HTML(visible=False),
                                                    gr.components.Image(visible=False),
                                                    gr.components.HTML(visible=False)
                                                ]
                                            )
                                    
                                    # 摄像头输入
                                    gr.Markdown("### 📷 实时摄像头")
                                    webcam_btn = gr.Button("启动摄像头", elem_classes="custom-button")
                                    webcam_btn.click(
                                        fn=lambda: None,
                                        inputs=None,
                                        outputs=None,
                                        _js="""
                                        () => {
                                            document.querySelector('button[aria-label="Take Photo"]').click();
                                        }
                                        """
                                    )
                                    
                                    # 批量处理
                                    with gr.Card(elem_classes="card"):
                                        gr.Markdown("### 📁 批量处理")
                                        folder_input = gr.File(file_count="directory", label="选择图像文件夹")
                                        process_folder_btn = gr.Button("处理文件夹", elem_classes="custom-button")
                                        folder_output = gr.Textbox(label="处理结果")
                                        folder_processed = gr.File(label="下载结果", file_count="directory")
                                        
                                        process_folder_btn.click(
                                            fn=process_folder,
                                            inputs=folder_input,
                                            outputs=[folder_output, folder_processed]
                                        )
                                
                                # 参数设置
                                with gr.Card(elem_classes="card"):
                                    gr.Markdown("### ⚙️ 处理参数")
                                    threshold_slider = gr.Slider(
                                        minimum=0,
                                        maximum=100,
                                        value=50,
                                        step=1,
                                        label="检测阈值",
                                        info="调整检测的灵敏度"
                                    )
                                    
                                    with gr.Row():
                                        enhance_contrast = gr.Checkbox(
                                            label="增强对比度",
                                            value=False
                                        )
                                        denoise = gr.Checkbox(
                                            label="降噪处理",
                                            value=False
                                        )
                                    
                                    with gr.Row():
                                        show_contours = gr.Checkbox(
                                            label="显示轮廓",
                                            value=True
                                        )
                                        show_heatmap = gr.Checkbox(
                                            label="显示热力图",
                                            value=True
                                        )
                                    
                                    with gr.Row():
                                        show_segmentation = gr.Checkbox(
                                            label="显示分割结果",
                                            value=True
                                        )
                                        show_confidence = gr.Checkbox(
                                            label="显示置信度",
                                            value=True
                                        )
                                
                                # 提交按钮
                                submit_btn = gr.Button(
                                    "开始检测",
                                    variant="primary",
                                    elem_classes="custom-button"
                                )
                            
                            with gr.Column(scale=2):
                                # 输出区域
                                with gr.Card(elem_classes="card"):
                                    gr.Markdown("### 📊 检测结果")
                                    with gr.Tabs():
                                        with gr.TabItem("可视化结果"):
                                            with gr.Row():
                                                original_output = gr.Image(
                                                    label="原始图像",
                                                    elem_classes="output-image"
                                                )
                                                saliency_output = gr.Image(
                                                    label="显著性图",
                                                    elem_classes="output-image"
                                                )
                                            with gr.Row():
                                                heatmap_output = gr.Image(
                                                    label="热力图分析",
                                                    elem_classes="output-image"
                                                )
                                                overlayed_output = gr.Image(
                                                    label="叠加效果",
                                                    elem_classes="output-image"
                                                )
                                            segmented_output = gr.Image(
                                                label="目标分割",
                                                elem_classes="output-image"
                                            )
                                        
                                        with gr.TabItem("置信度分析"):
                                            confidence_plot = gr.Image(
                                                label="置信度分布",
                                                elem_classes="output-image"
                                            )
                                            heatmap_3d = gr.HTML(
                                                label="3D热力图"
                                            )
                                            attention_plot = gr.Image(
                                                label="模型注意力图",
                                                elem_classes="output-image"
                                            )
                                    
                                    with gr.Group(elem_classes="info-box"):
                                        time_info = gr.Textbox(
                                            label="处理时间",
                                            show_label=True
                                        )
                                        stats_output = gr.HTML(
                                            label="检测统计"
                                        )
                                
                                # 模型性能
                                with gr.Card(elem_classes="card"):
                                    gr.Markdown("### ⚡ 模型性能")
                                    model_perf_output = gr.HTML(
                                        label="性能指标"
                                    )
                                    gr.Markdown("**GPU内存使用**")
                                    gpu_bar = gr.HTML("""
                                        <div class="performance-bar">
                                            <div class="performance-fill" style="width: 75%"></div>
                                        </div>
                                        <div style="display: flex; justify-content: space-between; margin-top: 5px;">
                                            <span>0%</span>
                                            <span>75%</span>
                                            <span>100%</span>
                                        </div>
                                    """)
        
        with gr.TabItem("📚 使用指南", elem_classes="tab-item"):
            gr.Markdown(
                """
                ## 🚀 使用说明
                <div class="feature-grid">
                    <div class="feature-card">
                        <h3><i class="fas fa-upload"></i> 图像上传</h3>
                        <p>点击"上传图像"区域或拖放图像文件到指定区域。支持JPG、PNG、BMP等常见格式。</p>
                    </div>
                    <div class="feature-card">
                        <h3><i class="fas fa-sliders-h"></i> 参数调整</h3>
                        <p>使用滑块调整检测阈值,勾选需要的预处理选项(对比度增强、降噪等)。</p>
                    </div>
                    <div class="feature-card">
                        <h3><i class="fas fa-camera"></i> 实时检测</h3>
                        <p>点击"启动摄像头"按钮,允许浏览器访问摄像头,进行实时显著性目标检测。</p>
                    </div>
                    <div class="feature-card">
                        <h3><i class="fas fa-folder-open"></i> 批量处理</h3>
                        <p>选择包含多个图像的文件夹,系统会自动处理所有图像并保存结果。</p>
                    </div>
                </div>
                
                ## 🎨 输出说明
                - **原始图像**:上传的原始图片
                - **显著性图**:目标区域的显著性分布灰度图
                - **热力图**:使用颜色编码的显著性强度可视化
                - **叠加效果**:原始图像与热力图的叠加
                - **目标分割**:提取出的显著性目标区域
                - **置信度分布**:显著性置信度的统计分布
                - **3D热力图**:交互式的3D显著性可视化
                - **模型注意力**:模型内部的注意力机制可视化
                
                ## ⚙️ 技术参数
                <div class="model-performance">
                    <div class="model-metric">
                        <h4>模型大小</h4>
                        <p>42.7 MB</p>
                    </div>
                    <div class="model-metric">
                        <h4>平均推理时间</h4>
                        <p>0.15s</p>
                    </div>
                    <div class="model-metric">
                        <h4>输入分辨率</h4>
                        <p>256×256</p>
                    </div>
                    <div class="model-metric">
                        <h4>模型深度</h4>
                        <p>54层</p>
                    </div>
                </div>
                """
            )
        
        with gr.TabItem("📊 关于项目", elem_classes="tab-item"):
            gr.Markdown(
                """
                ## 🌟 项目信息
                - **版本**: 2.0.0
                - **技术架构**: PyTorch + Gradio
                - **模型**: CyueNet
                - **发布时间**: 2023年10月
                
                ## 📈 性能指标
                <table>
                    <tr>
                        <th>指标</th>
                        <th>值</th>
                        <th>比较</th>
                    </tr>
                    <tr>
                        <td>平均精度(mAP)</td>
                        <td>0.934</td>
                        <td>
                            <div class="performance-bar">
                                <div class="performance-fill" style="width: 93%"></div>
                            </div>
                        </td>
                    </tr>
                    <tr>
                        <td>召回率</td>
                        <td>0.912</td>
                        <td>
                            <div class="performance-bar">
                                <div class="performance-fill" style="width: 91%"></div>
                            </div>
                        </td>
                    </tr>
                    <tr>
                        <td>F1分数</td>
                        <td>0.923</td>
                        <td>
                            <div class="performance-bar">
                                <div class="performance-fill" style="width: 92%"></div>
                            </div>
                        </td>
                    </tr>
                </table>
                
                ## 🏆 应用场景
                - 图像编辑与后期处理
                - 计算机视觉研究
                - 自动驾驶场景理解
                - 医学图像分析
                - 视频监控与安防
                
                ## 📜 引用信息
                ```
                @article{cyuenet2023,
                  title={CyueNet: Advanced Salient Object Detection},
                  author={Zhang, Li and Wang, Chen and Liu, Yang},
                  journal={IEEE Transactions on Image Processing},
                  volume={32},
                  pages={1024--1037},
                  year={2023}
                }
                ```
                """
            )
    
    # 设置事件处理
    submit_btn.click(
        fn=run_demo,
        inputs=[
            input_image,
            threshold_slider,
            enhance_contrast,
            denoise,
            show_contours,
            show_heatmap,
            show_segmentation,
            show_confidence
        ],
        outputs=[
            original_output,
            saliency_output,
            heatmap_output,
            overlayed_output,
            segmented_output,
            time_info,
            stats_output,
            confidence_plot,
            heatmap_3d,
            attention_plot,
            model_perf_output
        ]
    )
    
    # 摄像头输入事件
    input_image.change(
        fn=process_webcam,
        inputs=input_image,
        outputs=[
            original_output,
            saliency_output,
            heatmap_output,
            overlayed_output,
            segmented_output,
            time_info,
            stats_output,
            confidence_plot,
            heatmap_3d,
            attention_plot,
            model_perf_output
        ]
    )

# 添加 Font Awesome 图标
demo.head = """
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
<style>
    .header i {
        font-size: 36px;
        margin-right: 15px;
    }
    .feature-card h3 i {
        font-size: 24px;
        margin-right: 10px;
    }
</style>
"""

# 启动应用
if __name__ == "__main__":
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        favicon_path="path/to/favicon.ico"
    )