File size: 30,775 Bytes
f6bb351
 
 
 
 
c1ca72e
f6bb351
 
ec83b0e
98c2f64
f6bb351
 
98c2f64
 
 
f6bb351
98c2f64
e9f17fe
 
249ac00
0eb142b
ec83b0e
9c9e6ba
 
 
 
 
98c2f64
 
ec83b0e
 
0eb142b
ec83b0e
98c2f64
ec83b0e
98c2f64
0eb142b
ec83b0e
 
 
98c2f64
 
 
 
0eb142b
ec83b0e
 
98c2f64
 
ec83b0e
 
0eb142b
ec83b0e
0eb142b
 
98c2f64
9c9e6ba
0eb142b
98c2f64
751a096
ec83b0e
 
98c2f64
0eb142b
ec83b0e
0eb142b
98c2f64
 
0eb142b
ec83b0e
98c2f64
 
 
 
 
 
 
ec83b0e
 
98c2f64
 
 
 
 
 
 
ec83b0e
 
98c2f64
 
 
 
 
 
 
 
 
 
ec83b0e
 
 
98c2f64
 
 
 
ec83b0e
 
 
98c2f64
 
ec83b0e
 
98c2f64
 
 
 
8b81b1e
1d78d1d
98c2f64
 
 
1d78d1d
 
98c2f64
 
 
1d78d1d
751a096
98c2f64
8b81b1e
1d78d1d
98c2f64
 
 
 
 
 
8b81b1e
0eb142b
751a096
5dc6eaf
 
751a096
 
98c2f64
751a096
 
 
5dc6eaf
 
751a096
98c2f64
751a096
98c2f64
 
 
5dc6eaf
 
 
751a096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c2f64
751a096
 
98c2f64
751a096
98c2f64
 
 
751a096
 
 
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f17fe
98c2f64
 
 
 
 
 
e9f17fe
9e416cb
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249ac00
 
 
 
 
 
98c2f64
 
 
249ac00
 
98c2f64
 
 
 
 
 
 
 
 
 
751a096
 
98c2f64
 
751a096
 
98c2f64
751a096
249ac00
98c2f64
 
 
 
 
 
 
751a096
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
98c2f64
 
 
 
 
9e416cb
98c2f64
 
9e416cb
98c2f64
9e416cb
9c9e6ba
 
9e416cb
249ac00
 
 
 
 
 
9e416cb
9c9e6ba
 
 
249ac00
 
9e416cb
 
 
 
 
98c2f64
9e416cb
 
 
 
98c2f64
9e416cb
751a096
9e416cb
 
 
98c2f64
9e416cb
 
98c2f64
9c9e6ba
98c2f64
751a096
9e416cb
98c2f64
e9f17fe
98c2f64
 
 
 
9e416cb
98c2f64
 
 
 
 
 
9e416cb
 
98c2f64
 
 
 
751a096
 
 
 
 
1d78d1d
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751a096
9c9e6ba
751a096
98c2f64
 
9e416cb
98c2f64
9e416cb
98c2f64
9e416cb
 
 
 
 
751a096
 
98c2f64
 
9e416cb
 
98c2f64
9e416cb
98c2f64
 
9e416cb
 
 
 
 
 
98c2f64
 
 
 
 
 
 
 
9e416cb
751a096
98c2f64
9e416cb
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9e6ba
 
98c2f64
 
9c9e6ba
 
 
 
98c2f64
9c9e6ba
 
98c2f64
 
9c9e6ba
98c2f64
9c9e6ba
 
 
751a096
98c2f64
 
 
 
 
 
 
 
 
751a096
 
 
 
 
98c2f64
 
751a096
 
98c2f64
751a096
 
 
98c2f64
751a096
 
 
98c2f64
751a096
 
 
98c2f64
751a096
 
 
 
 
98c2f64
751a096
 
 
 
 
 
98c2f64
751a096
 
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
751a096
 
 
 
98c2f64
751a096
 
 
 
98c2f64
751a096
 
9c9e6ba
 
98c2f64
9c9e6ba
98c2f64
 
9c9e6ba
98c2f64
9c9e6ba
 
 
98c2f64
9c9e6ba
 
751a096
98c2f64
9c9e6ba
98c2f64
9c9e6ba
 
751a096
98c2f64
751a096
 
 
98c2f64
 
 
 
 
 
 
 
 
751a096
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9e6ba
98c2f64
9c9e6ba
 
 
98c2f64
9c9e6ba
e9f17fe
98c2f64
e9f17fe
751a096
 
98c2f64
751a096
 
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751a096
98c2f64
 
 
 
751a096
9e416cb
751a096
98c2f64
751a096
 
98c2f64
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
98c2f64
 
 
 
 
 
 
 
 
751a096
98c2f64
 
 
 
 
751a096
 
 
98c2f64
751a096
 
 
 
 
98c2f64
751a096
 
98c2f64
 
751a096
9e416cb
98c2f64
9e416cb
 
 
 
 
 
 
751a096
 
 
98c2f64
 
9e416cb
 
 
 
 
 
 
98c2f64
9e416cb
 
751a096
9e416cb
 
 
751a096
 
 
 
 
 
 
 
 
 
98c2f64
 
751a096
9e416cb
98c2f64
 
 
249ac00
98c2f64
 
 
 
 
 
 
 
 
 
1d78d1d
98c2f64
9e416cb
98c2f64
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
import torch
import torch.nn.functional as F
import numpy as np
import os
import time
import gradio as gr
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import concurrent.futures
from model.CyueNet_models import MMS
from utils1.data import transform_image
from datetime import datetime
import io
import base64

# GPU/CPU设置
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# CSS样式设置
custom_css = """
    :root {
        --primary-color: #2196F3;
        --secondary-color: #21CBF3;
        --background-color: #f6f8fa;
        --text-color: #333;
        --border-radius: 10px;
        --glass-bg: rgba(255, 255, 255, 0.25);
        --shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
    }

    .gradio-container {
        background: linear-gradient(135deg, var(--background-color), #ffffff);
        max-width: 1400px !important;
        margin: auto !important;
        backdrop-filter: blur(10px);
    }

    .output-image, .input-image {
        border-radius: var(--border-radius);
        box-shadow: var(--shadow);
        transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
    }

    .output-image:hover, .input-image:hover {
        transform: scale(1.02) translateY(-2px);
        box-shadow: 0 12px 40px 0 rgba(31, 38, 135, 0.5);
    }

    .custom-button {
        background: linear-gradient(45deg, var(--primary-color), var(--secondary-color));
        border: none;
        color: white;
        padding: 12px 24px;
        border-radius: var(--border-radius);
        cursor: pointer;
        transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
        font-weight: bold;
        text-transform: uppercase;
        letter-spacing: 1px;
        box-shadow: var(--shadow);
    }

    .custom-button:hover {
        transform: translateY(-3px);
        box-shadow: 0 12px 30px rgba(33, 150, 243, 0.4);
    }

    .advanced-controls {
        background: var(--glass-bg);
        border-radius: 20px;
        padding: 25px;
        box-shadow: var(--shadow);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
    }

    .result-container {
        background: var(--glass-bg);
        border-radius: 20px;
        padding: 20px;
        backdrop-filter: blur(15px);
        border: 1px solid rgba(255, 255, 255, 0.18);
        box-shadow: var(--shadow);
    }

    .interactive-viz {
        border-radius: 15px;
        overflow: hidden;
        transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
        box-shadow: var(--shadow);
    }

    .interactive-viz:hover {
        transform: translateY(-5px);
        box-shadow: 0 15px 35px rgba(0,0,0,0.15);
    }

    .statistics-container {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
        gap: 15px;
        margin-top: 15px;
    }

    .statistic-card {
        background: var(--glass-bg);
        padding: 20px;
        border-radius: var(--border-radius);
        text-align: center;
        box-shadow: var(--shadow);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
        transition: all 0.3s ease;
    }

    .statistic-card:hover {
        transform: translateY(-2px);
        box-shadow: 0 10px 25px rgba(0,0,0,0.1);
    }

    .progress-container {
        background: var(--glass-bg);
        border-radius: 10px;
        padding: 15px;
        margin: 10px 0;
        backdrop-filter: blur(10px);
    }

    .comparison-slider {
        background: var(--glass-bg);
        border-radius: 15px;
        padding: 20px;
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
    }
"""
class ImageProcessor:
    def __init__(self):
        self.model = None
        self.load_model()
        self.last_results = None
        self.cache = {}

    def load_model(self):
        """加载预训练的模型"""
        self.model = MMS()
        try:
            self.model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
            print("Model loaded successfully")
        except RuntimeError as e:
            print(f"Model loading error: {e}")
        except FileNotFoundError:
            print("Model file not found. Please check the path.")
        self.model.to(device)
        self.model.eval()

    def adjust_brightness_contrast(self, image, brightness=0, contrast=0):
        """调整图像亮度和对比度"""
        if brightness != 0:
            if brightness > 0:
                shadow = brightness
                highlight = 255
            else:
                shadow = 0
                highlight = 255 + brightness
            alpha_b = (highlight - shadow)/255
            gamma_b = shadow
            image = cv2.addWeighted(image, alpha_b, image, 0, gamma_b)
        if contrast != 0:
            f = 131*(contrast + 127)/(127*(131-contrast))
            alpha_c = f
            gamma_c = 127*(1-f)
            image = cv2.addWeighted(image, alpha_c, image, 0, gamma_c)
        return image

    def apply_filters(self, image, filter_type):
        """应用图像滤镜效果"""
        if filter_type == "Sharpen":
            kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
            return cv2.filter2D(image, -1, kernel)
        elif filter_type == "Blur":
            return cv2.GaussianBlur(image, (5,5), 0)
        elif filter_type == "Edge Enhancement":
            kernel = np.array([[0,-1,0], [-1,5,-1], [0,-1,0]])
            return cv2.filter2D(image, -1, kernel)
        return image

    def generate_analysis_plots(self, saliency_map):
        """生成英文分析图表"""
        plt.style.use('seaborn-v0_8')
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))
        
        # Histogram
        ax1.hist(saliency_map.flatten(), bins=50, color='#2196F3', alpha=0.7, edgecolor='black')
        ax1.set_title('Saliency Distribution Histogram', fontsize=12, pad=15)
        ax1.set_xlabel('Saliency Value', fontsize=10)
        ax1.set_ylabel('Frequency', fontsize=10)
        ax1.grid(True, alpha=0.3)
        
        # Add statistics
        mean_val = np.mean(saliency_map)
        median_val = np.median(saliency_map)
        ax1.axvline(mean_val, color='red', linestyle='--', alpha=0.7, label=f'Mean: {mean_val:.3f}')
        ax1.axvline(median_val, color='green', linestyle='--', alpha=0.7, label=f'Median: {median_val:.3f}')
        ax1.legend()
        
        # Cumulative distribution
        sorted_vals = np.sort(saliency_map.flatten())
        cumulative = np.arange(1, len(sorted_vals) + 1) / len(sorted_vals)
        ax2.plot(sorted_vals, cumulative, color='#FF6B35', linewidth=2)
        ax2.set_title('Cumulative Distribution Function', fontsize=12)
        ax2.set_xlabel('Saliency Value', fontsize=10)
        ax2.set_ylabel('Cumulative Probability', fontsize=10)
        ax2.grid(True, alpha=0.3)
        
        # Box plot
        ax3.boxplot(saliency_map.flatten(), patch_artist=True, 
                   boxprops=dict(facecolor='#21CBF3', alpha=0.7))
        ax3.set_title('Saliency Distribution Box Plot', fontsize=12)
        ax3.set_ylabel('Saliency Value', fontsize=10)
        ax3.grid(True, alpha=0.3)
        
        # Intensity profile (center line)
        center_row = saliency_map[saliency_map.shape[0]//2, :]
        ax4.plot(center_row, color='#9C27B0', linewidth=2)
        ax4.set_title('Center Line Intensity Profile', fontsize=12)
        ax4.set_xlabel('Pixel Position', fontsize=10)
        ax4.set_ylabel('Saliency Value', fontsize=10)
        ax4.grid(True, alpha=0.3)
        
        plt.tight_layout()
        
        # Save to bytes
        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
        buf.seek(0)
        img_array = np.array(Image.open(buf))
        plt.close()
        
        return img_array

    def quick_process(self, image, threshold=0.5, testsize=256):
        """快速处理模式,只输出显著性图"""
        if image is None:
            return None, "Please provide a valid image"
        
        # Check cache
        image_hash = hash(image.tobytes())
        cache_key = f"{image_hash}_{threshold}_{testsize}_quick"
        
        if cache_key in self.cache:
            return self.cache[cache_key]
        
        image_pil = Image.fromarray(image).convert('RGB')
        image_tensor = transform_image(image_pil, testsize)
        image_tensor = image_tensor.unsqueeze(0).to(device)
        
        time_start = time.time()
        
        with torch.no_grad():
            if device.type == 'cuda':
                with torch.cuda.amp.autocast():
                    _, res, *_ = self.model(image_tensor)
            else:
                with torch.amp.autocast(device_type='cpu'):
                    _, res, *_ = self.model(image_tensor)
        
        time_end = time.time()
        
        # 确保转换为float32类型
        res = res.to(torch.float32).sigmoid().cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
        
        h, w = image.shape[:2]
        res_resized = cv2.resize(res, (w, h))
        res_vis = (res_resized * 255).astype(np.uint8)
        
        result = (res_vis, f"Quick processing completed in {time_end - time_start:.3f}s")
        self.cache[cache_key] = result
        
        return result
    def process_image(self, image, threshold=0.5, testsize=256, 
                     enhance_contrast=False, denoise=False, 
                     brightness=0, contrast=0, filter_type="None",
                     process_mode="Full Analysis"):
        """增强的图像处理函数"""
        if image is None:
            return [None] * 9 + ["Please provide a valid image"]

        # Quick mode check
        if process_mode == "Quick Mode":
            saliency_map, time_info = self.quick_process(image, threshold, testsize)
            return (image, saliency_map, None, None, None, None, time_info, None, None)

        # Check cache for full processing
        image_hash = hash(image.tobytes())
        cache_key = f"{image_hash}_{threshold}_{testsize}_{enhance_contrast}_{denoise}_{brightness}_{contrast}_{filter_type}_full"
        
        if cache_key in self.cache:
            return self.cache[cache_key]

        # Image preprocessing with threading
        def preprocess_image():
            processed_image = image.copy()
            
            if denoise:
                processed_image = cv2.fastNlMeansDenoisingColored(processed_image, None, 10, 10, 7, 21)
            
            processed_image = self.adjust_brightness_contrast(processed_image, brightness, contrast)
            processed_image = self.apply_filters(processed_image, filter_type)
            
            if enhance_contrast:
                lab = cv2.cvtColor(processed_image, cv2.COLOR_RGB2LAB)
                l, a, b = cv2.split(lab)
                clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
                l = clahe.apply(l)
                lab = cv2.merge((l,a,b))
                processed_image = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
            
            return processed_image

        with concurrent.futures.ThreadPoolExecutor() as executor:
            future_preprocess = executor.submit(preprocess_image)
            processed_image = future_preprocess.result()

        original_image = processed_image.copy()
        
        # Model inference
        image_pil = Image.fromarray(processed_image).convert('RGB')
        image_tensor = transform_image(image_pil, testsize)
        image_tensor = image_tensor.unsqueeze(0).to(device)
        
        time_start = time.time()
        
        with torch.no_grad():
            if device.type == 'cuda':
                with torch.cuda.amp.autocast():
                    x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = self.model(image_tensor)
            else:
                with torch.amp.autocast(device_type='cpu'):
                    x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = self.model(image_tensor)
        
        time_end = time.time()
        inference_time = time_end - time_start
        
        # 确保转换为float32类型
        res = res.to(torch.float32).sigmoid().cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
        
        h, w = original_image.shape[:2]
        res_resized = cv2.resize(res, (w, h))
        
        # Generate visualizations
        res_vis = (res_resized * 255).astype(np.uint8)
        heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
        _, binary_mask = cv2.threshold(res_vis, int(255 * threshold), 255, cv2.THRESH_BINARY)
        
        # Create overlays
        alpha = 0.5
        original_bgr = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
        overlayed = cv2.addWeighted(original_bgr, 1-alpha, heatmap, alpha, 0)
        segmented = cv2.bitwise_and(original_bgr, original_bgr, mask=binary_mask)
        
        # Convert back to RGB
        overlayed_rgb = cv2.cvtColor(overlayed, cv2.COLOR_BGR2RGB)
        segmented_rgb = cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB)
        heatmap_rgb = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
        
        # Generate analysis plots
        analysis_plot = self.generate_analysis_plots(res_resized)
        
        # Calculate statistics
        contours = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
        total_area = w * h
        detected_area = cv2.countNonZero(binary_mask)
        coverage_ratio = detected_area / total_area
        
        stats = {
            "Processing Resolution": f"{w}x{h}",
            "Detected Objects": str(len(contours)),
            "Average Confidence": f"{np.mean(res_resized):.2%}",
            "Max Confidence": f"{np.max(res_resized):.2%}",
            "Coverage Ratio": f"{coverage_ratio:.2%}",
            "Processing Time": f"{inference_time:.3f}s"
        }
        
        # Create comparison image
        comparison_img = self.create_comparison_image(original_image, overlayed_rgb)
        
        # Save results
        self.last_results = {
            'saliency_map': res_resized,
            'binary_mask': binary_mask,
            'stats': stats
        }
        
        result = (original_image, res_vis, heatmap_rgb, overlayed_rgb, segmented_rgb, 
                comparison_img, f"Processing time: {inference_time:.4f}s", stats, analysis_plot)
        
        # Cache result
        self.cache[cache_key] = result
        
        return result

    def create_comparison_image(self, original, processed):
        """创建对比图像"""
        h, w = original.shape[:2]
        comparison = np.zeros((h, w*2, 3), dtype=np.uint8)
        comparison[:, :w] = original
        comparison[:, w:] = processed
        
        # Add dividing line
        cv2.line(comparison, (w, 0), (w, h), (255, 255, 255), 2)
        
        return comparison

    def export_results(self, format_type="PNG"):
        """导出结果"""
        if self.last_results is None:
            return "No results to export"
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        
        if format_type == "PDF Report":
            # Generate PDF report logic here
            return f"PDF report saved as saliency_report_{timestamp}.pdf"
        else:
            return f"Results exported as {format_type.lower()} files"
# Create processor instance
processor = ImageProcessor()

def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours, 
            brightness, contrast, filter_type, process_mode):
    """主处理函数"""
    if input_image is None:
        return [None] * 9 + ["Please upload an image"]
    
    # Process image
    results = processor.process_image(
        input_image, 
        threshold=threshold/100.0,
        enhance_contrast=enhance_contrast,
        denoise=denoise,
        brightness=brightness,
        contrast=contrast,
        filter_type=filter_type,
        process_mode=process_mode
    )
    
    original, saliency_map, heatmap, overlayed, segmented, comparison, time_info, stats, analysis_plot = results
    
    # Add contours if requested
    if show_contours and saliency_map is not None and overlayed is not None:
        _, binary = cv2.threshold(saliency_map, 127, 255, cv2.THRESH_BINARY)
        contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        overlay_with_contours = overlayed.copy()
        cv2.drawContours(overlay_with_contours, contours, -1, (0,255,0), 2)
        overlayed = overlay_with_contours
    
    # Generate statistics HTML
    if stats:
        stats_html = "<div class='statistics-container'>"
        for key, value in stats.items():
            stats_html += f"<div class='statistic-card'><h4>{key}</h4><p>{value}</p></div>"
        stats_html += "</div>"
    else:
        stats_html = "<p>No statistics available</p>"
    
    return (original, saliency_map, heatmap, overlayed, segmented, 
            comparison, time_info, stats_html, analysis_plot)

def create_comparison_view(original, result, slider_value):
    """创建滑块对比视图"""
    if original is None or result is None:
        return None
    
    h, w = original.shape[:2]
    split_point = int(w * slider_value)
    
    comparison = original.copy()
    comparison[:, split_point:] = result[:, split_point:]
    
    # Add vertical line
    cv2.line(comparison, (split_point, 0), (split_point, h), (255, 255, 0), 3)
    
    return comparison

# Create Gradio interface
with gr.Blocks(title="Advanced Saliency Object Detection System", css=custom_css) as demo:
    gr.Markdown(
        """
        # 🎯 Advanced Saliency Object Detection System
        ### AI-Powered Image Saliency Detection and Analysis Tool
        """
    )
    
    with gr.Tabs() as tabs:
        with gr.TabItem("🔍 Main Functions"):
            with gr.Row():
                with gr.Column(scale=1):
                    # Input controls
                    with gr.Group(elem_classes="advanced-controls"):
                        input_image = gr.Image(
                            label="Input Image",
                            type="numpy",
                            elem_classes="input-image"
                        )
                        
                        # Processing mode selection
                        process_mode = gr.Radio(
                            choices=["Full Analysis", "Quick Mode"],
                            value="Full Analysis",
                            label="Processing Mode",
                            info="Quick mode only outputs saliency map for faster processing"
                        )
                        
                        with gr.Accordion("Basic Settings", open=True):
                            threshold_slider = gr.Slider(
                                minimum=0,
                                maximum=100,
                                value=50,
                                step=1,
                                label="Detection Threshold",
                                info="Adjust detection sensitivity"
                            )
                            enhance_contrast = gr.Checkbox(
                                label="Enhance Contrast",
                                value=False
                            )
                            denoise = gr.Checkbox(
                                label="Noise Reduction",
                                value=False
                            )
                            show_contours = gr.Checkbox(
                                label="Show Contours",
                                value=True
                            )
                        
                        with gr.Accordion("Image Adjustments", open=False):
                            brightness = gr.Slider(
                                minimum=-100,
                                maximum=100,
                                value=0,
                                step=1,
                                label="Brightness"
                            )
                            contrast = gr.Slider(
                                minimum=-100,
                                maximum=100,
                                value=0,
                                step=1,
                                label="Contrast"
                            )
                            filter_type = gr.Radio(
                                choices=["None", "Sharpen", "Blur", "Edge Enhancement"],
                                value="None",
                                label="Image Filter"
                            )
                        
                        with gr.Accordion("Export Options", open=False):
                            export_format = gr.Dropdown(
                                choices=["PNG", "JPEG", "PDF Report"],
                                value="PNG",
                                label="Export Format"
                            )
                            export_btn = gr.Button(
                                "Export Results",
                                elem_classes="custom-button"
                            )
                        
                        with gr.Row():
                            submit_btn = gr.Button(
                                "Start Detection",
                                variant="primary",
                                elem_classes="custom-button"
                            )
                            reset_btn = gr.Button(
                                "Reset Parameters",
                                elem_classes="custom-button"
                            )
                
                with gr.Column(scale=2):
                    # Results display
                    with gr.Tabs():
                        with gr.TabItem("Detection Results"):
                            with gr.Row(elem_classes="result-container"):
                                original_output = gr.Image(
                                    label="Original Image",
                                    elem_classes="output-image"
                                )
                                saliency_output = gr.Image(
                                    label="Saliency Map",
                                    elem_classes="output-image"
                                )
                            
                            with gr.Row(elem_classes="result-container"):
                                heatmap_output = gr.Image(
                                    label="Heatmap Analysis",
                                    elem_classes="output-image"
                                )
                                overlayed_output = gr.Image(
                                    label="Overlay Effect",
                                    elem_classes="output-image"
                                )
                            
                            with gr.Row(elem_classes="result-container"):
                                segmented_output = gr.Image(
                                    label="Object Segmentation",
                                    elem_classes="output-image"
                                )
                                comparison_output = gr.Image(
                                    label="Side-by-Side Comparison",
                                    elem_classes="output-image"
                                )
                        
                        with gr.TabItem("Interactive Comparison"):
                            with gr.Group(elem_classes="comparison-slider"):
                                comparison_slider = gr.Slider(
                                    minimum=0,
                                    maximum=1,
                                    value=0.5,
                                    step=0.01,
                                    label="Original ← → Result",
                                    info="Drag to compare original and processed images"
                                )
                                interactive_comparison = gr.Image(
                                    label="Interactive Comparison View",
                                    elem_classes="interactive-viz"
                                )
                        
                        with gr.TabItem("Analysis Report"):
                            with gr.Group(elem_classes="result-container"):
                                time_info = gr.Textbox(
                                    label="Processing Time",
                                    show_label=True
                                )
                                stats_output = gr.HTML(
                                    label="Statistical Information"
                                )
                                analysis_plot = gr.Image(
                                    label="Detailed Analysis Charts",
                                    elem_classes="output-image"
                                )

        with gr.TabItem("📖 User Guide"):
            gr.Markdown(
                """
                ## Instructions
                1. **Upload Image**: Click the "Input Image" area to upload your image
                2. **Select Mode**: Choose between "Full Analysis" or "Quick Mode"
                   - Full Analysis: Complete processing with all visualizations
                   - Quick Mode: Fast processing, only outputs saliency map
                3. **Adjust Parameters**: 
                   - Use threshold slider to adjust detection sensitivity
                   - Enable contrast enhancement or noise reduction as needed
                   - Fine-tune brightness, contrast, and filters in advanced settings
                4. **Start Detection**: Click "Start Detection" to begin analysis
                5. **View Results**: Check different tabs for various visualization results
                6. **Export**: Use export options to save your results
                
                ## Features
                - **Saliency Map**: Shows importance distribution of image regions
                - **Heatmap**: Color-coded intensity visualization
                - **Overlay Effect**: Detection results overlaid on original image
                - **Object Segmentation**: Extracts key object regions
                - **Interactive Comparison**: Slide to compare original and processed images
                - **Analysis Report**: Detailed statistics and analysis charts
                
                ## Performance Tips
                - Use Quick Mode for faster processing when you only need saliency maps
                - Lower resolution images process faster
                - Enable GPU if available for better performance
                """
            )

        with gr.TabItem("ℹ️ About"):
            gr.Markdown(
                """
                ## Project Information
                - **Version**: 3.0.0
                - **Architecture**: PyTorch + Gradio
                - **Model**: CyueNet
                - **Language**: Multi-language support
                
                ## Key Features
                - Real-time image processing and analysis
                - Multi-dimensional result visualization
                - Rich image adjustment options
                - Detailed data analysis reports
                - Interactive comparison tools
                - Export functionality
                - Performance optimization with caching
                
                ## Update Log
                - ✅ Added Quick Mode for faster processing
                - ✅ Enhanced image preprocessing options
                - ✅ Added statistical analysis functions
                - ✅ Improved user interface with glassmorphism design
                - ✅ Added interactive comparison slider
                - ✅ Performance optimization with caching and threading
                - ✅ Multi-language chart support
                - ✅ Export functionality
                
                ## System Requirements
                - Python 3.8+
                - PyTorch 1.9+
                - CUDA (optional, for GPU acceleration)
                - 4GB+ RAM recommended
                """
            )
    
    # Event handlers
    def reset_params():
        return {
            threshold_slider: 50,
            brightness: 0,
            contrast: 0,
            filter_type: "None",
            enhance_contrast: False,
            denoise: False,
            show_contours: True,
            process_mode: "Full Analysis"
        }
    
    # Set up event handling
    submit_btn.click(
        fn=run_demo,
        inputs=[
            input_image,
            threshold_slider,
            enhance_contrast,
            denoise,
            show_contours,
            brightness,
            contrast,
            filter_type,
            process_mode
        ],
        outputs=[
            original_output,
            saliency_output,
            heatmap_output,
            overlayed_output,
            segmented_output,
            comparison_output,
            time_info,
            stats_output,
            analysis_plot
        ]
    )
    
    reset_btn.click(
        fn=reset_params,
        inputs=[],
        outputs=[
            threshold_slider,
            brightness,
            contrast,
            filter_type,
            enhance_contrast,
            denoise,
            show_contours,
            process_mode
        ]
    )
    
    # Interactive comparison
    comparison_slider.change(
        fn=create_comparison_view,
        inputs=[original_output, overlayed_output, comparison_slider],
        outputs=[interactive_comparison]
    )
    
    # Export functionality
    export_btn.click(
        fn=processor.export_results,
        inputs=[export_format],
        outputs=[gr.Textbox(label="Export Status")]
    )

# Launch the application
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True
    )