File size: 19,281 Bytes
f6bb351
 
 
 
 
c1ca72e
f6bb351
 
ec83b0e
f6bb351
 
 
e9f17fe
 
 
0eb142b
ec83b0e
9c9e6ba
 
 
 
 
ec83b0e
 
0eb142b
ec83b0e
751a096
ec83b0e
0eb142b
ec83b0e
 
 
751a096
 
0eb142b
ec83b0e
 
751a096
ec83b0e
 
0eb142b
ec83b0e
0eb142b
 
751a096
9c9e6ba
0eb142b
 
751a096
ec83b0e
 
0eb142b
ec83b0e
0eb142b
751a096
 
0eb142b
ec83b0e
 
 
 
751a096
ec83b0e
 
 
 
751a096
ec83b0e
751a096
 
ec83b0e
 
 
 
751a096
ec83b0e
751a096
 
ec83b0e
 
 
 
751a096
 
1d78d1d
ec83b0e
 
 
751a096
9c9e6ba
ec83b0e
 
 
751a096
 
8b81b1e
1d78d1d
751a096
 
 
 
 
1d78d1d
751a096
 
 
 
 
9c9e6ba
751a096
1d78d1d
751a096
 
1d78d1d
751a096
 
 
1d78d1d
751a096
 
 
8b81b1e
751a096
 
1d78d1d
 
751a096
9c9e6ba
1d78d1d
 
751a096
8b81b1e
1d78d1d
751a096
 
 
 
 
8b81b1e
0eb142b
e9f17fe
751a096
5dc6eaf
 
751a096
 
 
 
 
5dc6eaf
 
751a096
 
 
 
5dc6eaf
 
 
751a096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f17fe
 
 
 
 
 
 
 
9e416cb
e9f17fe
 
 
 
9e416cb
e9f17fe
 
 
 
751a096
 
 
 
 
 
e9f17fe
751a096
 
1d78d1d
 
9e416cb
751a096
 
 
 
 
 
9e416cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9e6ba
 
 
9e416cb
 
751a096
9e416cb
9c9e6ba
 
 
9e416cb
 
 
 
 
 
 
 
751a096
9e416cb
 
 
 
 
 
751a096
9e416cb
 
 
 
 
 
9c9e6ba
751a096
 
9e416cb
 
e9f17fe
9e416cb
 
e9f17fe
9c9e6ba
 
751a096
9e416cb
 
751a096
 
 
 
 
 
1d78d1d
751a096
 
9c9e6ba
751a096
 
9c9e6ba
751a096
 
9e416cb
 
751a096
9e416cb
 
 
 
 
 
 
751a096
 
 
9e416cb
 
751a096
9e416cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751a096
 
9e416cb
 
 
9c9e6ba
 
751a096
 
9c9e6ba
 
 
 
751a096
9c9e6ba
 
751a096
 
9c9e6ba
 
 
 
 
751a096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9e6ba
 
751a096
9c9e6ba
 
751a096
9c9e6ba
 
 
 
 
 
 
 
751a096
 
9c9e6ba
 
 
 
751a096
 
 
 
 
 
 
9c9e6ba
 
751a096
 
9c9e6ba
 
 
 
 
 
751a096
9c9e6ba
e9f17fe
 
 
751a096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
751a096
 
 
 
 
 
 
 
9e416cb
751a096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
 
 
 
 
 
 
 
751a096
 
 
 
9e416cb
 
 
 
 
 
 
 
 
751a096
9e416cb
 
 
751a096
 
 
 
 
 
 
 
 
 
 
 
9e416cb
1d78d1d
9e416cb
 
e9f17fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import torch
import torch.nn.functional as F
import numpy as np
import os
import time
import gradio as gr
import cv2
from PIL import Image
import matplotlib.pyplot as plt
from model.CyueNet_models import MMS
from utils1.data import transform_image

# 设置GPU/CPU - 修复了torch.cuda.is_available()的调用
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

custom_css = """
    :root {
        --primary-color: #2196F3;
        --secondary-color: #21CBF3;
        --background-color: #f6f8fa;
        --text-color: #333;
        --border-radius: 10px;
    }

    .gradio-container {
        background: linear-gradient(135deg, var(--background-color), #ffffff);
        max-width: 1200px !important;
        margin: auto !important;
    }

    .output-image, .input-image {
        border-radius: var(--border-radius);
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        transition: transform 0.3s ease;
    }

    .output-image:hover, .input-image:hover {
        transform: scale(1.02);
    }

    .custom-button {
        background: linear-gradient(45deg, var(--primary-color), var(--secondary-color));
        border: none;
        color: white;
        padding: 10px 20px;
        border-radius: var(--border-radius);
        cursor: pointer;
        transition: all 0.3s ease;
        font-weight: bold;
        text-transform: uppercase;
        letter-spacing: 1px;
    }

    .custom-button:hover {
        transform: translateY(-2px);
        box-shadow: 0 5px 15px rgba(33, 150, 243, 0.3);
    }

    .tabs {
        border-radius: var(--border-radius);
        overflow: hidden;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    }

    .slider-component {
        background: white;
        padding: 15px;
        border-radius: var(--border-radius);
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
        margin: 10px 0;
    }

    .info-box {
        background: white;
        padding: 15px;
        border-radius: var(--border-radius);
        margin: 10px 0;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    }

    .statistics-container {
        display: flex;
        gap: 10px;
        margin-top: 10px;
        flex-wrap: wrap;
    }

    .statistic-card {
        background: white;
        padding: 15px;
        border-radius: var(--border-radius);
        flex: 1;
        text-align: center;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
        min-width: 200px;
    }

    .accordion {
        background: white;
        border-radius: var(--border-radius);
        margin: 10px 0;
        box-shadow: 0 2px 4px rgba(0,0,0,0.05);
    }
    
    .result-card {
        background: white;
        padding: 20px;
        border-radius: var(--border-radius);
        margin: 10px 0;
        box-shadow: 0 2px 4px rgba(0,0,0,0.05);
    }
    
    .analysis-container {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
        gap: 20px;
        margin: 20px 0;
    }
    
    .chart-container {
        background: white;
        border-radius: var(--border-radius);
        padding: 15px;
        margin: 10px 0;
    }

    .control-panel {
        background: white;
        padding: 15px;
        border-radius: var(--border-radius);
        margin: 10px 0;
    }

    .result-gallery {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
        gap: 15px;
        margin: 15px 0;
    }
"""

class ImageProcessor:
    def __init__(self):
        self.model = None
        self.load_model()
        self.last_results = None

    def load_model(self):
        """加载预训练的模型"""
        self.model = MMS()
        try:
            self.model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
            print("模型加载成功")
        except RuntimeError as e:
            print(f"加载状态字典时出现部分不匹配,错误信息: {e}")
        self.model.to(device)
        self.model.eval()

    def adjust_brightness_contrast(self, image, brightness=0, contrast=0):
        """调整图像亮度和对比度"""
        if brightness != 0:
            if brightness > 0:
                shadow = brightness
                highlight = 255
            else:
                shadow = 0
                highlight = 255 + brightness
            alpha_b = (highlight - shadow)/255
            gamma_b = shadow
            image = cv2.addWeighted(image, alpha_b, image, 0, gamma_b)
        if contrast != 0:
            f = 131*(contrast + 127)/(127*(131-contrast))
            alpha_c = f
            gamma_c = 127*(1-f)
            image = cv2.addWeighted(image, alpha_c, image, 0, gamma_c)
        return image

    def apply_filters(self, image, filter_type):
        """应用图像滤镜效果"""
        if filter_type == "锐化":
            kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
            return cv2.filter2D(image, -1, kernel)
        elif filter_type == "柔化":
            return cv2.GaussianBlur(image, (5,5), 0)
        return image

    def generate_analysis_plots(self, saliency_map):
        """生成分析图表 - 使用matplotlib替代plotly"""
        # 创建直方图
        plt.figure(figsize=(8, 4))
        plt.hist(saliency_map.flatten(), bins=50, color='skyblue', edgecolor='black')
        plt.title('显著性分布直方图')
        plt.xlabel('显著性值')
        plt.ylabel('频率')
        plt.grid(axis='y', alpha=0.75)
        
        # 保存到缓冲区
        plt.tight_layout()
        plt.savefig('temp_hist.png')
        plt.close()
        
        # 读取并返回图像
        hist_img = cv2.imread('temp_hist.png')
        hist_img = cv2.cvtColor(hist_img, cv2.COLOR_BGR2RGB)
        return hist_img

    def process_image(self, image, threshold=0.5, testsize=256, 
                     enhance_contrast=False, denoise=False, 
                     brightness=0, contrast=0, filter_type="无"):
        """增强的图像处理函数"""
        if image is None:
            return [None] * 8 + ["请提供有效的图像"]

        # 图像预处理
        if denoise:
            image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
        
        # 应用亮度和对比度调整
        image = self.adjust_brightness_contrast(image, brightness, contrast)
        
        # 应用滤镜
        image = self.apply_filters(image, filter_type)
        
        if enhance_contrast:
            lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
            l, a, b = cv2.split(lab)
            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
            l = clahe.apply(l)
            lab = cv2.merge((l,a,b))
            image = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)

        # 保存原始图像
        original_image = image.copy()
        
        # 预处理图像
        image_pil = Image.fromarray(image).convert('RGB')
        image_tensor = transform_image(image_pil, testsize)
        image_tensor = image_tensor.unsqueeze(0)
        image_tensor = image_tensor.to(device)
        
        # 计时
        time_start = time.time()
        
        # 推理
        with torch.no_grad():
            x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = self.model(image_tensor)
        
        time_end = time.time()
        inference_time = time_end - time_start
        
        # 处理输出结果
        res = res.sigmoid().data.cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
        
        # 调整大小
        h, w = original_image.shape[:2]
        res_resized = cv2.resize(res, (w, h))
        
        # 生成可视化结果
        res_vis = (res_resized * 255).astype(np.uint8)
        heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
        _, binary_mask = cv2.threshold(res_vis, int(255 * threshold), 255, cv2.THRESH_BINARY)
        
        # 叠加结果
        alpha = 0.5
        original_bgr = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
        overlayed = cv2.addWeighted(original_bgr, 1-alpha, heatmap, alpha, 0)
        segmented = cv2.bitwise_and(original_bgr, original_bgr, mask=binary_mask)
        
        # 转回RGB格式
        overlayed_rgb = cv2.cvtColor(overlayed, cv2.COLOR_BGR2RGB)
        segmented_rgb = cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB)
        
        # 生成分析图表
        analysis_plot = self.generate_analysis_plots(res_resized)
        
        # 计算统计信息
        contours = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
        stats = {
            "处理分辨率": f"{w}x{h}",
            "检测目标数量": str(len(contours)),
            "平均置信度": f"{np.mean(res_resized):.2%}",
            "最大置信度": f"{np.max(res_resized):.2%}",
            "处理时间": f"{inference_time:.3f}秒"
        }
        
        # 保存结果供后续分析
        self.last_results = {
            'saliency_map': res_resized,
            'binary_mask': binary_mask,
            'stats': stats
        }
        
        return (original_image, res_vis, heatmap, overlayed_rgb, segmented_rgb, 
                f"推理时间: {inference_time:.4f}秒", stats, analysis_plot)

# 创建处理器实例
processor = ImageProcessor()

def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours, 
            brightness, contrast, filter_type):
    """增强的主处理函数"""
    if input_image is None:
        return [None] * 8 + ["请上传图片"]
    
    # 处理图像
    results = processor.process_image(
        input_image, 
        threshold=threshold/100.0,
        enhance_contrast=enhance_contrast,
        denoise=denoise,
        brightness=brightness,
        contrast=contrast,
        filter_type=filter_type
    )
    
    original, saliency_map, heatmap, overlayed, segmented, time_info, stats, analysis_plot = results
    
    # 添加轮廓显示
    if show_contours and saliency_map is not None:
        _, binary = cv2.threshold(saliency_map, 127, 255, cv2.THRESH_BINARY)
        contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        overlay_with_contours = overlayed.copy()
        cv2.drawContours(overlay_with_contours, contours, -1, (0,255,0), 2)
        overlayed = overlay_with_contours
    
    # 生成统计信息HTML
    stats_html = "<div class='statistics-container'>"
    for key, value in stats.items():
        stats_html += f"<div class='statistic-card'><h4>{key}</h4><p>{value}</p></div>"
    stats_html += "</div>"
    
    return (original, saliency_map, heatmap, overlayed, segmented, 
            time_info, stats_html, analysis_plot)

# 创建Gradio界面
with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as demo:
    gr.Markdown(
        """
        # 🎯 智能显著性目标检测系统
        ### 基于深度学习的图像显著性检测与分析工具
        """
    )
    
    with gr.Tabs() as tabs:
        with gr.TabItem("🔍 主要功能"):
            with gr.Row():
                with gr.Column(scale=1):
                    # 输入控制面板
                    with gr.Group(elem_classes="control-panel"):
                        input_image = gr.Image(
                            label="输入图像",
                            type="numpy",
                            elem_classes="input-image"
                        )
                        
                        with gr.Accordion("基础设置", open=True):
                            threshold_slider = gr.Slider(
                                minimum=0,
                                maximum=100,
                                value=50,
                                step=1,
                                label="检测阈值",
                                info="调整检测的灵敏度"
                            )
                            enhance_contrast = gr.Checkbox(
                                label="增强对比度",
                                value=False
                            )
                            denoise = gr.Checkbox(
                                label="降噪处理",
                                value=False
                            )
                            show_contours = gr.Checkbox(
                                label="显示轮廓",
                                value=True
                            )
                        
                        with gr.Accordion("图像调整", open=False):
                            brightness = gr.Slider(
                                minimum=-100,
                                maximum=100,
                                value=0,
                                step=1,
                                label="亮度"
                            )
                            contrast = gr.Slider(
                                minimum=-100,
                                maximum=100,
                                value=0,
                                step=1,
                                label="对比度"
                            )
                            filter_type = gr.Radio(
                                choices=["无", "锐化", "柔化"],
                                value="无",
                                label="图像滤镜"
                            )
                        
                        with gr.Row():
                            submit_btn = gr.Button(
                                "开始检测",
                                variant="primary",
                                elem_classes="custom-button"
                            )
                            reset_btn = gr.Button(
                                "重置参数",
                                elem_classes="custom-button"
                            )
                
                with gr.Column(scale=2):
                    # 结果显示区域
                    with gr.Tabs():
                        with gr.TabItem("检测结果"):
                            with gr.Row(elem_classes="result-gallery"):
                                original_output = gr.Image(
                                    label="原始图像",
                                    elem_classes="output-image"
                                )
                                saliency_output = gr.Image(
                                    label="显著性图",
                                    elem_classes="output-image"
                                )
                            
                            with gr.Row(elem_classes="result-gallery"):
                                heatmap_output = gr.Image(
                                    label="热力图分析",
                                    elem_classes="output-image"
                                )
                                overlayed_output = gr.Image(
                                    label="叠加效果",
                                    elem_classes="output-image"
                                )
                            
                            segmented_output = gr.Image(
                                label="目标分割",
                                elem_classes="output-image"
                            )
                        
                        with gr.TabItem("分析报告"):
                            with gr.Group(elem_classes="info-box"):
                                time_info = gr.Textbox(
                                    label="处理时间",
                                    show_label=True
                                )
                                stats_output = gr.HTML(
                                    label="统计信息"
                                )
                                analysis_plot = gr.Image(
                                    label="显著性分布分析",
                                    elem_classes="output-image"
                                )

        with gr.TabItem("📖 使用指南"):
            gr.Markdown(
                """
                ## 使用说明
                1. **上传图片**: 点击左侧"输入图像"区域上传待分析的图片
                2. **调整参数**: 
                   - 使用阈值滑块调整检测的灵敏度
                   - 可选择是否增强对比度或进行降噪
                   - 在图像调整面板中调整亮度、对比度和滤镜
                3. **开始检测**: 点击"开始检测"按钮进行分析
                4. **查看结果**: 在不同标签页中查看分析结果
                
                ## 功能说明
                - **显著性图**: 展示目标区域的重要性分布
                - **热力图**: 使用色彩展示检测强度
                - **叠加效果**: 将检测结果与原图叠加展示
                - **目标分割**: 提取关键目标区域
                - **分析报告**: 查看详细的统计信息和分析图表
                """
            )

        with gr.TabItem("ℹ️ 关于"):
            gr.Markdown(
                """
                ## 项目信息
                - **版本**: 2.0.0
                - **技术架构**: PyTorch + Gradio
                - **模型**: CyueNet
                
                ## 主要特点
                - 实时图像处理和分析
                - 多维度结果可视化
                - 丰富的图像调整选项
                - 详细的数据分析报告
                
                ## 更新日志
                - 增加了图像预处理选项
                - 添加了统计分析功能
                - 优化了用户界面
                - 提升了处理性能
                """
            )
    
    # 重置参数函数
    def reset_params():
        return {
            threshold_slider: 50,
            brightness: 0,
            contrast: 0,
            filter_type: "无",
            enhance_contrast: False,
            denoise: False,
            show_contours: True
        }
    
    # 设置事件处理
    submit_btn.click(
        fn=run_demo,
        inputs=[
            input_image,
            threshold_slider,
            enhance_contrast,
            denoise,
            show_contours,
            brightness,
            contrast,
            filter_type
        ],
        outputs=[
            original_output,
            saliency_output,
            heatmap_output,
            overlayed_output,
            segmented_output,
            time_info,
            stats_output,
            analysis_plot
        ]
    )
    
    reset_btn.click(
        fn=reset_params,
        inputs=[],
        outputs=[
            threshold_slider,
            brightness,
            contrast,
            filter_type,
            enhance_contrast,
            denoise,
            show_contours
        ]
    )

# 启动应用
if __name__ == "__main__":
    demo.launch(share=True)