File size: 30,479 Bytes
f6bb351
 
 
 
 
c1ca72e
f6bb351
 
ec83b0e
98c2f64
f6bb351
 
98c2f64
 
 
f6bb351
98c2f64
e9f17fe
 
f2eacd9
0eb142b
ec83b0e
a357391
 
 
f9f4747
a357391
f9f4747
 
6e571b2
 
0eb142b
f9f4747
a357391
 
f9f4747
0eb142b
ec83b0e
6e571b2
 
f9f4747
a357391
f9f4747
 
a357391
 
 
 
f9f4747
98c2f64
 
6e571b2
f9f4747
 
 
a357391
 
 
 
 
 
 
f9f4747
6e571b2
 
a357391
f9f4747
 
a357391
 
 
f9f4747
 
a357391
f9f4747
 
 
a357391
 
 
f9f4747
 
a357391
f9f4747
 
 
a357391
 
 
 
 
 
f9f4747
a357391
 
 
f9f4747
 
a357391
 
 
 
 
 
 
 
 
 
f9f4747
a357391
 
 
f9f4747
 
 
a357391
 
 
 
 
f9f4747
a357391
 
 
f9f4747
a357391
 
 
f9f4747
a357391
 
 
f9f4747
a357391
 
f9f4747
 
8b81b1e
0eb142b
751a096
5dc6eaf
 
751a096
 
98c2f64
751a096
 
 
5dc6eaf
 
a357391
 
 
b8af151
a357391
 
5dc6eaf
 
 
751a096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8af151
751a096
 
b8af151
751a096
b8af151
98c2f64
 
751a096
 
 
9b80d35
f9f4747
98c2f64
9b80d35
 
 
 
f9f4747
9b80d35
f9f4747
 
 
 
a357391
9b80d35
 
f9f4747
 
 
9b80d35
a357391
9b80d35
98c2f64
f9f4747
 
 
 
 
9b80d35
f2eacd9
9b80d35
f9f4747
 
 
 
9b80d35
a357391
98c2f64
f9f4747
 
 
 
 
9b80d35
f9f4747
a357391
98c2f64
f9f4747
98c2f64
 
e9f17fe
98c2f64
a357391
 
f2eacd9
a357391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c2f64
9e416cb
a357391
f9f4747
 
 
 
38a20c8
 
f9f4747
38a20c8
 
 
 
f9f4747
38a20c8
 
 
 
 
 
f9f4747
38a20c8
f9f4747
 
38a20c8
f9f4747
 
38a20c8
f9f4747
 
38a20c8
f9f4747
 
 
 
 
 
 
38a20c8
f9f4747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b80d35
f9f4747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a357391
 
 
 
 
 
 
 
 
 
 
 
f2eacd9
a357391
 
 
 
 
 
 
 
 
 
98c2f64
a357391
 
751a096
9c9e6ba
751a096
98c2f64
 
9e416cb
f9f4747
9e416cb
a357391
9e416cb
 
 
 
 
751a096
 
98c2f64
 
9e416cb
 
f9f4747
c47359c
f9f4747
 
9e416cb
 
 
 
 
 
f9f4747
 
 
98c2f64
f9f4747
98c2f64
f9f4747
 
6dbe802
f9f4747
 
9e416cb
98c2f64
 
 
 
 
 
 
 
 
 
a357391
 
98c2f64
 
 
 
a357391
 
9c9e6ba
 
a357391
 
9c9e6ba
 
 
a357391
 
 
 
 
 
9c9e6ba
a357391
9c9e6ba
 
 
751a096
a357391
98c2f64
b8af151
 
 
a357391
98c2f64
 
a357391
 
 
 
 
 
 
 
 
751a096
a357391
 
751a096
 
a357391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751a096
 
 
 
a357391
751a096
a357391
751a096
 
a357391
 
751a096
9c9e6ba
a357391
 
 
 
 
9c9e6ba
b8af151
a357391
9c9e6ba
 
b8af151
a357391
9c9e6ba
751a096
a357391
9c9e6ba
b8af151
a357391
9c9e6ba
751a096
a357391
 
751a096
 
a357391
98c2f64
a357391
 
98c2f64
 
a357391
 
98c2f64
751a096
a357391
 
98c2f64
 
 
 
 
a357391
 
98c2f64
 
f2eacd9
a357391
98c2f64
 
a357391
 
9c9e6ba
a357391
 
9c9e6ba
 
a357391
9c9e6ba
e9f17fe
a357391
 
751a096
a357391
 
751a096
 
a357391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751a096
9e416cb
a357391
 
751a096
 
a357391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751a096
 
 
a357391
 
 
 
 
 
 
 
 
 
 
 
 
 
9e416cb
 
 
a357391
 
 
 
 
 
 
 
 
9e416cb
 
a357391
 
 
 
 
 
 
 
 
 
9e416cb
 
751a096
 
a357391
751a096
a357391
 
 
 
 
 
 
 
751a096
9e416cb
98c2f64
a357391
98c2f64
249ac00
98c2f64
 
 
a357391
 
 
 
 
 
 
1d78d1d
b8af151
9e416cb
98c2f64
 
 
 
a357391
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import torch
import torch.nn.functional as F
import numpy as np
import os
import time
import gradio as gr
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import concurrent.futures
from model.CyueNet_models import MMS
from utils1.data import transform_image
from datetime import datetime
import io
import base64

# GPU/CPU设置
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# CSS样式设置
custom_css = """
    :root {
        --primary-color: #2196F3;
        --secondary-color: #21CBF3;
        --background-color: #f6f8fa;
        --text-color: #333;
        --border-radius: 10px;
        --glass-bg: rgba(255, 255, 255, 0.25);
        --shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
    }

    .gradio-container {
        background: linear-gradient(135deg, var(--background-color), #ffffff);
        max-width: 1400px !important;
        margin: auto !important;
        backdrop-filter: blur(10px);
    }

    .output-image, .input-image {
        border-radius: var(--border-radius);
        box-shadow: var(--shadow);
        transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
    }

    .output-image:hover, .input-image:hover {
        transform: scale(1.02) translateY(-2px);
        box-shadow: 0 12px 40px 0 rgba(31, 38, 135, 0.5);
    }

    .custom-button {
        background: linear-gradient(45deg, var(--primary-color), var(--secondary-color));
        border: none;
        color: white;
        padding: 12px 24px;
        border-radius: var(--border-radius);
        cursor: pointer;
        transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
        font-weight: bold;
        text-transform: uppercase;
        letter-spacing: 1px;
        box-shadow: var(--shadow);
    }

    .custom-button:hover {
        transform: translateY(-3px);
        box-shadow: 0 12px 30px rgba(33, 150, 243, 0.4);
    }

    .advanced-controls {
        background: var(--glass-bg);
        border-radius: 20px;
        padding: 25px;
        box-shadow: var(--shadow);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
    }

    .result-container {
        background: var(--glass-bg);
        border-radius: 20px;
        padding: 20px;
        backdrop-filter: blur(15px);
        border: 1px solid rgba(255, 255, 255, 0.18);
        box-shadow: var(--shadow);
    }

    .interactive-viz {
        border-radius: 15px;
        overflow: hidden;
        transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
        box-shadow: var(--shadow);
    }

    .interactive-viz:hover {
        transform: translateY(-5px);
        box-shadow: 0 15px 35px rgba(0,0,0,0.15);
    }

    .statistics-container {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
        gap: 15px;
        margin-top: 15px;
    }

    .statistic-card {
        background: var(--glass-bg);
        padding: 20px;
        border-radius: var(--border-radius);
        text-align: center;
        box-shadow: var(--shadow);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
        transition: all 0.3s ease;
    }

    .statistic-card:hover {
        transform: translateY(-2px);
        box-shadow: 0 10px 25px rgba(0,0,0,0.1);
    }

    .progress-container {
        background: var(--glass-bg);
        border-radius: 10px;
        padding: 15px;
        margin: 10px 0;
        backdrop-filter: blur(10px);
    }

    .comparison-slider {
        background: var(--glass-bg);
        border-radius: 15px;
        padding: 20px;
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.18);
    }
"""
class ImageProcessor:
    def __init__(self):
        self.model = None
        self.load_model()
        self.last_results = None
        self.cache = {}

    def load_model(self):
        """加载预训练的模型"""
        self.model = MMS()
        try:
            self.model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
            print("模型加载成功")
        except RuntimeError as e:
            print(f"模型加载错误: {e}")
        except FileNotFoundError:
            print("未找到模型文件,请检查路径。")
        self.model.to(device)
        self.model.eval()

    def adjust_brightness_contrast(self, image, brightness=0, contrast=0):
        """调整图像亮度和对比度"""
        if brightness != 0:
            if brightness > 0:
                shadow = brightness
                highlight = 255
            else:
                shadow = 0
                highlight = 255 + brightness
            alpha_b = (highlight - shadow)/255
            gamma_b = shadow
            image = cv2.addWeighted(image, alpha_b, image, 0, gamma_b)
        if contrast != 0:
            f = 131*(contrast + 127)/(127*(131-contrast))
            alpha_c = f
            gamma_c = 127*(1-f)
            image = cv2.addWeighted(image, alpha_c, image, 0, gamma_c)
        return image

    def apply_filters(self, image, filter_type):
        """应用图像滤镜效果"""
        if filter_type == "锐化":
            kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
            return cv2.filter2D(image, -1, kernel)
        elif filter_type == "模糊":
            return cv2.GaussianBlur(image, (5,5), 0)
        elif filter_type == "边缘增强":
            kernel = np.array([[0,-1,0], [-1,5,-1], [0,-1,0]])
            return cv2.filter2D(image, -1, kernel)
        return image

    def generate_analysis_plots(self, saliency_map):
        """生成分析图表 - 使用原始显著性值(二值化之前)"""
        plt.style.use('seaborn-v0_8')
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))
        
        # 使用原始显著性值(二值化之前)
        saliency_values = saliency_map.flatten()
        
        # 直方图
        ax1.hist(saliency_values, bins=50, color='#2196F3', alpha=0.7, edgecolor='black')
        ax1.set_title('Histogram of Saliency Distribution', fontsize=12, pad=15)
        ax1.set_xlabel('Saliency Value', fontsize=10)
        ax1.set_ylabel('Frequency', fontsize=10)
        ax1.grid(True, alpha=0.3)
        # 添加统计信息
        mean_val = np.mean(saliency_values)
        median_val = np.median(saliency_values)
        ax1.axvline(mean_val, color='red', linestyle='--', alpha=0.7, label=f'Mean: {mean_val:.3f}')
        ax1.axvline(median_val, color='green', linestyle='--', alpha=0.7, label=f'Median: {median_val:.3f}')
        ax1.legend()
        
        # 累积分布
        sorted_vals = np.sort(saliency_values)
        cumulative = np.arange(1, len(sorted_vals) + 1) / len(sorted_vals)
        ax2.plot(sorted_vals, cumulative, color='#FF6B35', linewidth=2)
        ax2.set_title('Cumulative Distribution Function', fontsize=12)
        ax2.set_xlabel('Saliency Value', fontsize=10)
        ax2.set_ylabel('Cumulative Probability', fontsize=10)
        ax2.grid(True, alpha=0.3)
        
        # 箱线图
        ax3.boxplot(saliency_values, patch_artist=True, 
                   boxprops=dict(facecolor='#21CBF3', alpha=0.7))
        ax3.set_title('Boxplot of Saliency Distribution', fontsize=12)
        ax3.set_ylabel('Saliency Value', fontsize=10)
        ax3.grid(True, alpha=0.3)
        
        # 强度剖面(中心线)
        center_row = saliency_map[saliency_map.shape[0]//2, :]
        ax4.plot(center_row, color='#9C27B0', linewidth=2)
        ax4.set_title('Intensity Profile along Center Line', fontsize=12)
        ax4.set_xlabel('Pixel Position', fontsize=10)
        ax4.set_ylabel('Saliency Value', fontsize=10)
        ax4.grid(True, alpha=0.3)
        
        plt.tight_layout()
        # 保存为字节
        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
        buf.seek(0)
        img_array = np.array(Image.open(buf))
        plt.close()
        return img_array
        
    def quick_process(self, image, threshold=0.5, testsize=256):
    
        if image is None:
            return None, "请提供有效的图像"
        
        # 检查缓存
        image_hash = hash(image.tobytes())
        cache_key = f"{image_hash}_{threshold}_{testsize}_quick"
        
        if cache_key in self.cache:
            return self.cache[cache_key]
        
        image_pil = Image.fromarray(image).convert('RGB')
        image_tensor = transform_image(image_pil, testsize)
        image_tensor = image_tensor.unsqueeze(0).to(device)
        
        time_start = time.time()
        
        with torch.no_grad():
            # 关键修改:只计算必要的输出,避免完整模型计算
            if device.type == 'cuda':
                with torch.cuda.amp.autocast():
                    _, res = self.model.forward_quick(image_tensor)  # 使用简化版前向传播
            else:
                with torch.amp.autocast(device_type='cpu'):
                    _, res = self.model.forward_quick(image_tensor)  # 使用简化版前向传播
        
        time_end = time.time()
        
        # 确保转换为float32类型
        res = res.to(torch.float32).sigmoid().cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
        
        h, w = image.shape[:2]
        res_resized = cv2.resize(res, (w, h))
        res_vis = (res_resized * 255).astype(np.uint8)
        
        result = (res_vis, f"快速处理完成,耗时 {time_end - time_start:.3f}秒")
        self.cache[cache_key] = result
        
        return result


    def process_image(self, image, threshold=0.5, testsize=256, 
                     enhance_contrast=False, denoise=False, 
                     brightness=0, contrast=0, filter_type="无",
                     process_mode="完整分析"):
        """增强的图像处理函数"""
        if image is None:
            return [None] * 9 + ["请提供有效的图像"]

        # 快速模式检查
        if process_mode == "快速模式":
            saliency_map, time_info = self.quick_process(image, threshold, testsize)
            return (image, saliency_map, None, None, None, None, time_info, None, None)

        # 检查完整处理的缓存
        image_hash = hash(image.tobytes())
        cache_key = f"{image_hash}_{threshold}_{testsize}_{enhance_contrast}_{denoise}_{brightness}_{contrast}_{filter_type}_full"
        
        if cache_key in self.cache:
            return self.cache[cache_key]

        # 使用线程进行图像预处理
        def preprocess_image():
            processed_image = image.copy()
            
            if denoise:
                processed_image = cv2.fastNlMeansDenoisingColored(processed_image, None, 10, 10, 7, 21)
            
            processed_image = self.adjust_brightness_contrast(processed_image, brightness, contrast)
            processed_image = self.apply_filters(processed_image, filter_type)
            
            if enhance_contrast:
                lab = cv2.cvtColor(processed_image, cv2.COLOR_RGB2LAB)
                l, a, b = cv2.split(lab)
                clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
                l = clahe.apply(l)
                lab = cv2.merge((l,a,b))
                processed_image = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
            
            return processed_image

        with concurrent.futures.ThreadPoolExecutor() as executor:
            future_preprocess = executor.submit(preprocess_image)
            processed_image = future_preprocess.result()

        original_image = processed_image.copy()
        
        # 模型推理
        image_pil = Image.fromarray(processed_image).convert('RGB')
        image_tensor = transform_image(image_pil, testsize)
        image_tensor = image_tensor.unsqueeze(0).to(device)
        
        time_start = time.time()
        
        with torch.no_grad():
            if device.type == 'cuda':
                with torch.cuda.amp.autocast():
                    x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = self.model(image_tensor)
            else:
                with torch.amp.autocast(device_type='cpu'):
                    x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = self.model(image_tensor)
        
        time_end = time.time()
        inference_time = time_end - time_start
        
        # 确保转换为float32类型
        res = res.to(torch.float32).sigmoid().cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
        
        h, w = original_image.shape[:2]
        res_resized = cv2.resize(res, (w, h))
        
        # 生成可视化
        res_vis = (res_resized * 255).astype(np.uint8)
        heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
        _, binary_mask = cv2.threshold(res_vis, int(255 * threshold), 255, cv2.THRESH_BINARY)
        
        # 创建叠加效果
        alpha = 0.5
        original_bgr = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
        overlayed = cv2.addWeighted(original_bgr, 1-alpha, heatmap, alpha, 0)
        segmented = cv2.bitwise_and(original_bgr, original_bgr, mask=binary_mask)
        
        # 转换回RGB
        overlayed_rgb = cv2.cvtColor(overlayed, cv2.COLOR_BGR2RGB)
        segmented_rgb = cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB)
        heatmap_rgb = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
        
        # 生成分析图表 - 使用原始显著性值(二值化之前)
        analysis_plot = self.generate_analysis_plots(res_resized)
        
        # 计算统计信息
        contours = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
        total_area = w * h
        detected_area = cv2.countNonZero(binary_mask)
        coverage_ratio = detected_area / total_area
        
        stats = {
            "处理分辨率": f"{w}x{h}",
            "检测到对象数": str(len(contours)),
            "平均置信度": f"{np.mean(res_resized):.2%}",
            "最大置信度": f"{np.max(res_resized):.2%}",
            "覆盖率": f"{coverage_ratio:.2%}",
            "处理时间": f"{inference_time:.3f}秒"
        }
        
        # 创建对比图像
        comparison_img = self.create_comparison_image(original_image, overlayed_rgb)
        
        # 保存结果
        self.last_results = {
            'saliency_map': res_resized,
            'binary_mask': binary_mask,
            'stats': stats
        }
        
        result = (original_image, res_vis, heatmap_rgb, overlayed_rgb, segmented_rgb, 
                comparison_img, f"处理时间: {inference_time:.4f}秒", stats, analysis_plot)
        
        # 缓存结果
        self.cache[cache_key] = result
        
        return result

    def create_comparison_image(self, original, processed):
        """创建对比图像"""
        h, w = original.shape[:2]
        comparison = np.zeros((h, w*2, 3), dtype=np.uint8)
        comparison[:, :w] = original
        comparison[:, w:] = processed
        
        # 添加分界线
        cv2.line(comparison, (w, 0), (w, h), (255, 255, 255), 2)
        
        return comparison

    def export_results(self, format_type="PNG"):
        """导出结果"""
        if self.last_results is None:
            return "没有结果可供导出"
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        
        if format_type == "PDF报告":
            # 生成PDF报告逻辑
            return f"PDF报告已保存为 saliency_report_{timestamp}.pdf"
        else:
            return f"结果已导出为 {format_type.lower()} 文件"
# Create processor instance
processor = ImageProcessor()

def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours, 
            brightness, contrast, filter_type, process_mode):
    """主处理函数"""
    if input_image is None:
        return [None] * 9 + ["请上传图像"]
    
    # 处理图像
    results = processor.process_image(
        input_image, 
        threshold=threshold/100.0,
        enhance_contrast=enhance_contrast,
        denoise=denoise,
        brightness=brightness,
        contrast=contrast,
        filter_type=filter_type,
        process_mode=process_mode
    )
    
    original, saliency_map, heatmap, overlayed, segmented, comparison, time_info, stats, analysis_plot = results
    
    # 如果需要显示轮廓
    if show_contours and saliency_map is not None and overlayed is not None:
        _, binary = cv2.threshold(saliency_map, 127, 255, cv2.THRESH_BINARY)
        contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        overlay_with_contours = overlayed.copy()
        cv2.drawContours(overlay_with_contours, contours, -1, (0,255,0), 2)
        overlayed = overlay_with_contours
    
    # 生成统计信息HTML
    if stats:
        stats_html = "<div class='statistics-container'>"
        for key, value in stats.items():
            stats_html += f"<div class='statistic-card'><h4>{key}</h4><p>{value}</p></div>"
        stats_html += "</div>"
    else:
        stats_html = "<p>无可用统计信息</p>"
    
    return (original, saliency_map, heatmap, overlayed, segmented, 
            comparison, time_info, stats_html, analysis_plot)

def create_comparison_view(original, result, slider_value):
    """创建滑块对比视图"""
    if original is None or result is None:
        return None
    
    h, w = original.shape[:2]
    split_point = int(w * slider_value)
    
    comparison = original.copy()
    comparison[:, split_point:] = result[:, split_point:]
    
    # 添加垂直线
    cv2.line(comparison, (split_point, 0), (split_point, h), (255, 255, 0), 3)
    
    return comparison

# Create Gradio interface
with gr.Blocks(title="高级显著性对象检测系统", css=custom_css) as demo:
    gr.Markdown(
        """
        # 🎯 高级显著性对象检测系统
        ### AI驱动的图像显著性检测与分析工具
        """
    )
    
    with gr.Tabs() as tabs:
        with gr.TabItem("🔍 主功能"):
            with gr.Row():
                with gr.Column(scale=1):
                    # 输入控件
                    with gr.Group(elem_classes="advanced-controls"):
                        input_image = gr.Image(
                            label="输入图像",
                            type="numpy",
                            elem_classes="input-image"
                        )
                        
                        # 处理模式选择
                        process_mode = gr.Radio(
                            choices=["完整分析", "快速模式"],
                            value="完整分析",
                            label="处理模式",
                            info="快速模式仅输出显著性图,处理速度更快"
                        )
                        
                        with gr.Accordion("基本设置", open=True):
                            threshold_slider = gr.Slider(
                                minimum=0,
                                maximum=100,
                                value=50,
                                step=1,
                                label="检测阈值",
                                info="调整检测灵敏度"
                            )
                            enhance_contrast = gr.Checkbox(
                                label="增强对比度",
                                value=False
                            )
                            denoise = gr.Checkbox(
                                label="降噪",
                                value=False
                            )
                            show_contours = gr.Checkbox(
                                label="显示轮廓",
                                value=True
                            )
                        
                        with gr.Accordion("图像调整", open=False):
                            brightness = gr.Slider(
                                minimum=-100,
                                maximum=100,
                                value=0,
                                step=1,
                                label="亮度"
                            )
                            contrast = gr.Slider(
                                minimum=-100,
                                maximum=100,
                                value=0,
                                step=1,
                                label="对比度"
                            )
                            filter_type = gr.Radio(
                                choices=["无", "锐化", "模糊", "边缘增强"],
                                value="无",
                                label="图像滤镜"
                            )
                        
                        with gr.Accordion("导出选项", open=False):
                            export_format = gr.Dropdown(
                                choices=["PNG", "JPEG", "PDF报告"],
                                value="PNG",
                                label="导出格式"
                            )
                            export_btn = gr.Button(
                                "导出结果",
                                elem_classes="custom-button"
                            )
                        
                        with gr.Row():
                            submit_btn = gr.Button(
                                "开始检测",
                                variant="primary",
                                elem_classes="custom-button"
                            )
                            reset_btn = gr.Button(
                                "重置参数",
                                elem_classes="custom-button"
                            )
                
                with gr.Column(scale=2):
                    # 结果显示
                    with gr.Tabs():
                        with gr.TabItem("检测结果"):
                            with gr.Row(elem_classes="result-container"):
                                original_output = gr.Image(
                                    label="原始图像",
                                    elem_classes="output-image"
                                )
                                saliency_output = gr.Image(
                                    label="显著性图",
                                    elem_classes="output-image"
                                )
                            
                            with gr.Row(elem_classes="result-container"):
                                heatmap_output = gr.Image(
                                    label="热力图分析",
                                    elem_classes="output-image"
                                )
                                overlayed_output = gr.Image(
                                    label="叠加效果",
                                    elem_classes="output-image"
                                )
                            
                            with gr.Row(elem_classes="result-container"):
                                segmented_output = gr.Image(
                                    label="对象分割",
                                    elem_classes="output-image"
                                )
                                comparison_output = gr.Image(
                                    label="并排对比",
                                    elem_classes="output-image"
                                )
                        
                        with gr.TabItem("交互式对比"):
                            with gr.Group(elem_classes="comparison-slider"):
                                comparison_slider = gr.Slider(
                                    minimum=0,
                                    maximum=1,
                                    value=0.5,
                                    step=0.01,
                                    label="原始 ← → 结果",
                                    info="拖动滑块对比原始图像和处理结果"
                                )
                                interactive_comparison = gr.Image(
                                    label="交互式对比视图",
                                    elem_classes="interactive-viz"
                                )
                        
                        with gr.TabItem("分析报告"):
                            with gr.Group(elem_classes="result-container"):
                                time_info = gr.Textbox(
                                    label="处理时间",
                                    show_label=True
                                )
                                stats_output = gr.HTML(
                                    label="统计信息"
                                )
                                analysis_plot = gr.Image(
                                    label="详细分析图表",
                                    elem_classes="output-image"
                                )

        with gr.TabItem("📖 用户指南"):
            gr.Markdown(
                """
                ## 使用说明
                1. **上传图像**:点击"输入图像"区域上传您的图像
                2. **选择模式**:选择"完整分析"或"快速模式"
                   - 完整分析:完整处理流程,包含所有可视化结果
                   - 快速模式:快速处理,仅输出显著性图
                3. **调整参数**: 
                   - 使用阈值滑块调整检测灵敏度
                   - 根据需要启用对比度增强或降噪
                   - 在高级设置中微调亮度、对比度和滤镜
                4. **开始检测**:点击"开始检测"按钮开始分析
                5. **查看结果**:在不同标签页查看各种可视化结果
                6. **导出**:使用导出选项保存您的结果
                
                ## 功能特点
                - **显著性图**:显示图像区域的显著性分布
                - **热力图**:彩色编码的强度可视化
                - **叠加效果**:在原始图像上叠加检测结果
                - **对象分割**:提取关键对象区域
                - **交互式对比**:滑动比较原始图像和处理结果
                - **分析报告**:详细的统计信息和分析图表
                
                ## 性能提示
                - 当只需要显著性图时使用快速模式
                - 分辨率较低的图像处理速度更快
                - 启用GPU可获得更好的性能
                """
            )

        with gr.TabItem("ℹ️ 关于"):
            gr.Markdown(
                """
                ## 项目信息
                - **版本**:3.0.0
                - **架构**:PyTorch + Gradio
                - **模型**:CyueNet
                - **语言**:多语言支持
                
                ## 主要特点
                - 实时图像处理和分析
                - 多维结果可视化
                - 丰富的图像调整选项
                - 详细的数据分析报告
                - 交互式对比工具
                - 导出功能
                - 缓存优化性能
                
                ## 更新日志
                - ✅ 新增快速模式,提高处理速度
                - ✅ 增强图像预处理选项
                - ✅ 新增统计分析功能
                - ✅ 改进用户界面,采用玻璃拟态设计
                - ✅ 增加交互式对比滑块
                - ✅ 使用缓存和线程优化性能
                - ✅ 多语言图表支持
                - ✅ 导出功能
                
                ## 系统要求
                - Python 3.8+
                - PyTorch 1.9+
                - CUDA(可选,用于GPU加速)
                - 推荐4GB以上内存
                """
            )
    
    # 事件处理
    def reset_params():
        return {
            threshold_slider: 50,
            brightness: 0,
            contrast: 0,
            filter_type: "无",
            enhance_contrast: False,
            denoise: False,
            show_contours: True,
            process_mode: "完整分析"
        }
    
    # 设置事件处理
    submit_btn.click(
        fn=run_demo,
        inputs=[
            input_image,
            threshold_slider,
            enhance_contrast,
            denoise,
            show_contours,
            brightness,
            contrast,
            filter_type,
            process_mode
        ],
        outputs=[
            original_output,
            saliency_output,
            heatmap_output,
            overlayed_output,
            segmented_output,
            comparison_output,
            time_info,
            stats_output,
            analysis_plot
        ]
    )
    
    reset_btn.click(
        fn=reset_params,
        inputs=[],
        outputs=[
            threshold_slider,
            brightness,
            contrast,
            filter_type,
            enhance_contrast,
            denoise,
            show_contours,
            process_mode
        ]
    )
    
    # 交互式对比
    comparison_slider.change(
        fn=create_comparison_view,
        inputs=[original_output, overlayed_output, comparison_slider],
        outputs=[interactive_comparison]
    )
    
    # 导出功能
    export_btn.click(
        fn=processor.export_results,
        inputs=[export_format],
        outputs=[gr.Textbox(label="导出状态")]
    )

# 启动应用
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True
    )